实变函数论4-可测函数4-依测度收敛3:里斯定理【设在E上{fₙ}依测度收敛于f,则存在子列{fₙ}在E上a.e.收敛于f】【“依测度收敛”与“几乎处处收敛”关系】

定理1(Riesz/里斯定理)

设在 E E E { f n } \left\{ f _ { n } \right\} { fn} 依测度收敛于 f , f , f, 则存在子列 { f n i } \left\{ f _ { n _ { i } } \right\} { fni} E E E a . e . a . e . a.e. 收敛于 f . f . f.

证明
对任何正整数 s , s , s, ε = 1 2 ′ , δ = 1 2 2 . \varepsilon = \frac { 1 } { 2 ^ { \prime } } , \delta = \frac { 1 } { 2 ^ { 2 } } . ε=21,δ=221.由于 f n ( x ) ⇒ f ( x ) , f _ { n } ( x ) \Rightarrow f ( x ) , fn(x)f(x), 所 以存在正整数 n s , n _ { s } , ns, 使

m E c < 1 2 ′ , s = 1 , 2 , ⋯   , m E _ { c } < \frac { 1 } { 2 ^ { \prime } } , \quad s = 1 , 2 , \cdots , mEc<21,s=1,2,,

其中

E i = E [ ∣ f n n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值