定理1(Riesz/里斯定理)
设在 E E E 上 { f n } \left\{ f _ { n } \right\} { fn} 依测度收敛于 f , f , f, 则存在子列 { f n i } \left\{ f _ { n _ { i } } \right\} { fni} 在 E E E上 a . e . a . e . a.e. 收敛于 f . f . f.
证明
对任何正整数 s , s , s, 取 ε = 1 2 ′ , δ = 1 2 2 . \varepsilon = \frac { 1 } { 2 ^ { \prime } } , \delta = \frac { 1 } { 2 ^ { 2 } } . ε=2′1,δ=221.由于 f n ( x ) ⇒ f ( x ) , f _ { n } ( x ) \Rightarrow f ( x ) , fn(x)⇒f(x), 所 以存在正整数 n s , n _ { s } , ns, 使
m E c < 1 2 ′ , s = 1 , 2 , ⋯ , m E _ { c } < \frac { 1 } { 2 ^ { \prime } } , \quad s = 1 , 2 , \cdots , mEc<2′1,s=1,2,⋯,
其中
E i = E [ ∣ f n n