实变函数论4-可测函数4-依测度收敛4:勒贝格定理【设①mE<∞;②{fₙ}是E上a.e.有限的可测函数列;③{fₙ}在E上a.e.收敛于a.e.有限的函数f,则fₙ(x)⇒f(x)】

定理2(勒贝格)


(1) m E < ∞ ; m E < \infty ; mE<;
(2) { f n } \left\{ f _ { n } \right\} { fn} E E E a . e . a . e . a.e.有限的可测函数列;
(3) { f n } \left\{ f _ { n } \right\} { fn} E E E a . e . a . e . a.e. 收敛于 a . e . a . e . a.e.有限的函数 f , f , f,

f n ( x ) ⇒ f ( x ) . f _ { n } ( x ) \Rightarrow f ( x ) . fn(x)f(x).

证明
由叶戈罗夫定理的证明,对任意 k k k

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值