定理2(勒贝格)
设
(1) m E < ∞ ; m E < \infty ; mE<∞;
(2) { f n } \left\{ f _ { n } \right\} {
fn} 是 E E E 上 a . e . a . e . a.e.有限的可测函数列;
(3) { f n } \left\{ f _ { n } \right\} {
fn} 在 E E E 上 a . e . a . e . a.e. 收敛于 a . e . a . e . a.e.有限的函数 f , f , f,
则
f n ( x ) ⇒ f ( x ) . f _ { n } ( x ) \Rightarrow f ( x ) . fn(x)⇒f(x).
证明
由叶戈罗夫定理的证明,对任意 k k k