实变函数论5-积分论3-“非负可测函数”的勒贝格积分2:定理1-1【设E⊂Rₙ为可测集,f(x)为E上的一个非负可测函数,我们有:若mE=0,则∫ᴱf(x)dx=0】

定理1

E ⊂ R n E \subset \mathbf { R } ^ { n } ERn 为可测集, f ( x ) f ( x ) f(x) E E E上的一个非负可测函数,我们有

  • (1)若 m E = 0 , m E = 0 , mE=0, ∫ E f ( x ) d x = 0 ; \int _ { E } f ( x ) \mathrm { d } x = 0 ; Ef(x)dx=0;
  • (2)若 ∫ E f ( x ) d x = 0 , \int _ { E } f ( x ) \mathrm { d } x = 0 , Ef(x)dx=0, f ( x ) = 0 a . e . f ( x ) = 0 a . e . f(x)=0a.e. E ; E ; E;
  • (3)若 ∫ E f ( x ) d x < ∞ , \int _ { E } f ( x ) \mathrm { d } x < \infty , Ef(x)dx<, 0 ⩽ f ( x ) < ∞  a . e .  . 0 \leqslant f ( x ) < \infty \text { a . e . } . 0f(x)< a . e . . E ; E ; E;
  • (4)设 A A A B B B E E E 的 两个互不相交的可测子集,则
    ∫ A ∪ B f ( x ) d x = ∫ A f ( x ) d x + ∫ B f ( x ) d x . \int _ { A \cup B } f ( x ) \mathrm { d } x = \int _ { A } f ( x ) \mathrm { d } x + \int _ { B } f ( x ) \mathrm { d } x . ABf(x)dx=Af(x)dx+Bf(x)dx.

证明
(1)由本节的定义即得
(2)对于任意的正整数 n , n , n,
A n = E [ f ⩾ 1 n ] , A _ { n } = E \left[ f \geqslant \frac { 1 } { n } \right] ,

  • 25
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值