实变函数论5-积分论6-勒贝格积分的几何意义2:截面

定义2

E E E R p + q \mathbf { R } ^ { p + q } Rp+q 中 一点集, x 0 x _ { 0 } x0 R p \mathbf { R } ^ { p } Rp 中 一固定点,则 R q \mathbf { R } ^ { q } Rq 中的点集

{ y ∈ R q : ( x 0 , y ) ∈ E } \left\{ y \in \mathbf { R } ^ { q } : \left( x _ { 0 } , y \right) \in E \right\} { yRq:(x0,y)E}

称为 E E E 关 于 x 0 x _ { 0 } x0截面(图5.1),记为 E x 0 ② E _ { x _ { 0 } }^{②} Ex0

当然也可定义 E E E 关于 y 0 ∈ R q y _ { 0 } \in \mathbf { R } ^ { q } y0Rq 的截面 { x ∈ R p : ( x , y 0 ) ∈ E } = E y 0 \left\{ x \in \mathbf { R } ^ { p } : \left( x , y _ { 0 } \right) \in E \right\} = E _ { y _ { 0 } } { xRp:(x,y0)E}=Ey0

在这里插入图片描述

容易验证,直积与截面具有下列简单性质:

  1. 如果 A 1 ⊂ A 2 , A _ { 1 } \subset A _ { 2 } , A1A2, A 1 × B ⊂ A 2 × B ; A _ { 1 } \times B \subset A _ { 2 } \times B ; A1×BA2×B;
  2. 如果 A 1 ∩ A 2 = ∅ , A _ { 1 } \cap A _ { 2 } = \varnothing , A1A2=, ( A 1 × B ) ∩ ( A 2 × B ) = ∅ ; \left( A _ { 1 } \times B \right) \cap \left( A _ { 2 } \times B \right) = \varnothing ; (A1×B)(A2×B)=;
  3. ( ⋃ i A i ) × B = ⋃ i ( A i × B ) , \left( \bigcup _ { i } A _ { i } \right) \times B = \bigcup _ { i } \left( A _ { i } \times B \right) , (iA
  • 10
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值