实变函数论5-积分论6-勒贝格积分的几何意义9:富比尼定理【数学分析中重积分化累次积分的推广】

本文详细介绍了富比尼定理,阐述了在实变函数论中,非负可测函数在可测集上的重积分如何转化为累次积分,并通过例子说明了当重积分有限时,重积分与累次积分相等的性质。同时,对比了与黎曼积分的不同,指出富比尼定理在积分理论中的重要性。
摘要由CSDN通过智能技术生成

推论1

f ( x ) f ( x ) f(x) E ⊂ R n E \subset \mathbf { R } ^ { n } ERn 上的可积函数,则

∫ E f ( x ) d x = m G ( E , f + ) − m G ( E , f − ) . \int _ { E } f ( x ) \mathrm { d } x = m G \left( E , f ^ { + } \right) - m G \left( E , f ^ { - } \right) . Ef(x)dx=mG(E,f+)mG(E,f).

推论2

可测函数 f ( x ) f ( x ) f(x) E ⊂ R n E \subset \mathbf { R } ^ { n } ERn上可积分的充要条件是 m G ( E , f ∗ ) m G \left( E , f ^ { * } \right) mG(E,f) m G ( E , f − ) m G \left( E , f ^ { - } \right) mG(E,f)都是有限的,


由上面的两个定理立即可以导出富比尼定理,它说明了高维积分与低维积分之间的联系,也就是数学分析中重积分化累次积分的推广.

定理4(富比尼定理)

(1)
f ( P ) = f ( x , y ) f ( P ) = f ( x , y ) f(P)=f(x,y) A × B ⊂ R p + q ( A , B A \times B \subset \mathbf { R } ^ { p + q } ( A , B A×BRp+q(A,B 分别为 R p \mathbf { R } ^ { p } Rp R q \mathbf { R } ^ { q } Rq 中之可测集)上非负可测,则对 a . e . a . e . a.e. x ∈ A , f ( x , y ) x \in A , f ( x , y ) xA,f(x,y) 作为 y y y的函数在 B B B 上可测,且

∫ A × B f ( P ) d P = ∫ A   d x ∫ B f ( x , y ) d y . ( 1 ) \int _ { A \times B } f ( P ) \mathrm { d } P = \int _ { A } \mathrm { ~ d } x \int _ { B } f ( x , y ) \mathrm { d } y . \quad\quad(1) A×Bf(P)dP=A dxBf(x,y)dy.(1)

(2)
f ( P ) = f ( x , y ) f ( P ) = f ( x , y ) f(P)=f(x,y) A × B ⊂ R p + q A \times B \subset \mathbf { R } ^ { p + q } A×BR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值