推论1
设 f ( x ) f ( x ) f(x) 为 E ⊂ R n E \subset \mathbf { R } ^ { n } E⊂Rn 上的可积函数,则
∫ E f ( x ) d x = m G ( E , f + ) − m G ( E , f − ) . \int _ { E } f ( x ) \mathrm { d } x = m G \left( E , f ^ { + } \right) - m G \left( E , f ^ { - } \right) . ∫Ef(x)dx=mG(E,f+)−mG(E,f−).
推论2
可测函数 f ( x ) f ( x ) f(x) 在 E ⊂ R n E \subset \mathbf { R } ^ { n } E⊂Rn上可积分的充要条件是 m G ( E , f ∗ ) m G \left( E , f ^ { * } \right) mG(E,f∗) 与 m G ( E , f − ) m G \left( E , f ^ { - } \right) mG(E,f−)都是有限的,
由上面的两个定理立即可以导出富比尼定理,它说明了高维积分与低维积分之间的联系,也就是数学分析中重积分化累次积分的推广.
定理4(富比尼定理)
(1)
设 f ( P ) = f ( x , y ) f ( P ) = f ( x , y ) f(P)=f(x,y) 在 A × B ⊂ R p + q ( A , B A \times B \subset \mathbf { R } ^ { p + q } ( A , B A×B⊂Rp+q(A,B 分别为 R p \mathbf { R } ^ { p } Rp 与 R q \mathbf { R } ^ { q } Rq 中之可测集)上非负可测,则对 a . e . a . e . a.e. 的 x ∈ A , f ( x , y ) x \in A , f ( x , y ) x∈A,f(x,y) 作为 y y y的函数在 B B B 上可测,且
∫ A × B f ( P ) d P = ∫ A d x ∫ B f ( x , y ) d y . ( 1 ) \int _ { A \times B } f ( P ) \mathrm { d } P = \int _ { A } \mathrm { ~ d } x \int _ { B } f ( x , y ) \mathrm { d } y . \quad\quad(1) ∫A×Bf(P)dP=∫A dx∫Bf(x,y)dy.(1)
(2)
设 f ( P ) = f ( x , y ) f ( P ) = f ( x , y ) f(P)=f(x,y) 在 A × B ⊂ R p + q A \times B \subset \mathbf { R } ^ { p + q } A×B⊂R