实变函数论6-微分与不定积分1-维塔利定理2:维塔利覆盖定理

定义

E ⊂ R , V = { I } E \subset \mathbf { R } , \mathscr { V } = \{ I \} ER,V={ I} 是长度为正的区间族,如果对于任意 x ∈ E x \in E xE 及任意 ε > 0 , \varepsilon > 0 , ε>0, 存在区间 I x ∈ V , I _ { x } \in \mathscr { V } , IxV, 使 x ∈ I x x \in I _ { x } xIx m I x < ε , m I _ { x } < \varepsilon , mIx<ε, 则称 V \mathscr { V } V 依 维塔利意义覆盖 E , E , E, 简称 E E E 的 V-覆盖。

易证其定义的等价形式为:对于任意 x ∈ E , x \in E , xE, 存在一列区间 { I n } ⊂ T , \left\{ I _ { n } \right\} \subset \mathscr { T } , { In}T, 使 x ∈ I n , n = 1 , x \in I _ { n } , n = 1 , xIn,n=1, 2 , ⋯   , 2 , \cdots , 2,, m I n → 0 ( n → ∞ ) . m I _ { n } \rightarrow 0 ( n \rightarrow \infty ) . mIn0(n).


定理(维塔利覆盖定理)

E ⊂ R E \subset \mathbf { R } ER m ∗ E < ∞ , β m ^ { * } E < \infty , \beta mE<,β E E E V − V - V 覆盖,则可选出区间列 { I n } ⊂ Y , \left\{ I _ { n } \right\} \subset \mathscr { Y } , { In}Y, 使各 I n I _ { n } In 互不相交且

m ( E \ ⋃ k I k ) = 0. ( 1 ) m \left( E \backslash \bigcup _ { k } I _ { k } \right) = 0 .\quad\quad(1) m(E\kIk)=0.(1)

证明
不妨设 Y \mathscr { Y } Y 是由闭区间组成的,这是因为

m ∗ ( E \ ⋃ k I k ) = m ∗ ( E \ ⋃ k I k ) . m ^ { * } \left( E \backslash \bigcup _ { k } I _ { k } \right) = m ^ { * } \left( E \backslash \bigcup _ { k } I _ { k } \right) . m(E\kIk)=m(E\kIk).

其次不妨再设 V \mathscr { V } V 中 各区间都含在一个测度有限的开集 U U U</

  • 11
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值