论文笔记:《Time Series Generative Adversrial Networks》(TimeGAN,时间序列GAN)

TimeGAN是一种基于生成对抗网络GAN)的时间序列生成模型,可以用于生成具有与原始数据相似统计特征的合成时间序列数据。以下是使用Matlab实现TimeGAN的步骤: 1. 下载TimeGAN的Matlab实现代码,并将其添加到Matlab路径中。 2. 准备数据集。将原始时间序列数据集分为训练集和测试集,并将其转换为Matlab中的矩阵格式。 3. 对数据进行归一化处理。使用min-max归一化方法将数据缩放到[0,1]范围内。 4. 训练TimeGAN模型。使用训练集数据训练TimeGAN模型,并保存训练好的模型。 5. 生成合成时间序列数据。使用训练好的TimeGAN模型生成具有与原始数据相似统计特征的合成时间序列数据。 以下是使用Matlab实现TimeGAN的示例代码: ```matlab % 加载数据集 load('data.mat'); % 将数据集转换为Matlab矩阵格式 TrainIp = TrainIp'; TestIp = TestIp'; % 对数据进行归一化处理 mn = min(TrainIp); mx = max(TrainIp); TrainIp = (TrainIp - mn) / (mx - mn); mn2 = min(TestIp); mx2 = max(TestIp); TestIp = (TestIp - mn2) / (mx2 - mn2); % 设置TimeGAN模型参数 params.no = 24; % 时间序列长度 params.nz = 10; % 隐变量维度 params.niter = 10000; % 迭代次数 params.gamma = 1; % 损失函数权重 params.lr = 0.001; % 学习率 % 训练TimeGAN模型 model = train(TrainIp, params); % 生成合成时间序列数据 synthetic_data = generate(model, size(TestIp, 1)); % 将合成数据还原到原始数据范围内 synthetic_data = synthetic_data * (mx2 - mn2) + mn2; % 可视化合成数据和原始数据 figure; plot(TestIp); hold on; plot(synthetic_data); legend('Original Data', 'Synthetic Data'); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值