关于LLM你或许不知道的事情-为什么大语言模型的训练和推理要求比较高的精度,如FP32、FP16?浮点运算的精度概念详解//(转载)

本文详细解释了大语言模型训练中为何需要高精度如FP32,对比了FP32、FP16等浮点运算精度,讨论了它们在数值表示和应用中的优缺点,以及为何FP32通常用于训练。还介绍了BF16和FP8作为低精度选项的适用场景。
摘要由CSDN通过智能技术生成

为什么大语言模型的训练和推理要求比较高的精度,如FP32、FP16?浮点运算的精度概念详解 | 数据学习者官方网站(Datalearner)

感谢有价值的内容分享给大家~ 

文章中出现的CS基本数据储存知识:符号、指数、尾数:

计算机科学导论:第三章 数据存储 - 知乎 (zhihu.com)

 


为什么大语言模型的训练和推理要求比较高的精度,如FP32、FP16?浮点运算的精度概念详解

标签:#FP16##FP32##大模型训练##精度# 时间:2023/10/30 20:48:01 作者:小木

在大语言模型的训练和应用中,计算精度是一个非常重要的概念,本文将详细解释关于大语言模型中FP32、FP16等精度概念,并说明为什么大语言模型的训练通常使用FP32精度。

浮点运算中的精度概念

让我们通过一个简单的比喻来理解精度的概念。假设你有一个非常精细的尺子,它可以测量到毫米级别的长度。但是如果你要测量更小的长度,比如微米或纳米级别,这个尺子就不够用了。在这个例子中,尺子的精度就是毫米,它不能测量比毫米更小的单位。

现在,将这个比喻应用到计算机的浮点计算中。计算机在进行数值运算时,有一个固定的位数来表示数值,就像尺子有固定的长度和刻度一样。这个固定的位数决定了计算机的“尺子”能够多么精细地测量数值。如果一个数值的真实值非常小,或者两个数值非常接近,计算机的“尺子”可能就不能准确地测量它们,这就是精度问题。

为什么会有精度的概念呢?这主要是因为计算机的存储空间是有限的。每一个数都需要一些存储空间来表示,而存储空间的大小限制了能够表示的数的精度。如果我们想要更高的精度,就需要更多的存储空间和计算资源,这可能会增加计算的复杂性和成本。所以,精度是我们在使用计算机进行数值计算时必须考虑的一个重要因素,它是我们在追求准确结果和节省计算资源之间需要做出的一种权衡。

计算几种几种典型的精度(FP32、FP16、BF16、FP8)表示

FP32、FP16、BF16和FP8都是计算中使用的数字表示形式,特别是在浮点运算领域。这些格式主要通过它们使用的位数来区分,这影响了它们的精度、范围和内存要求。下面是一个表格形式呈现的这些格式的比较:

格式位大小精度范围内存使用量应用性能
FP3232位3D游戏、高性能计算(HPC)标准
FP1616位低于FP32狭于FP32低于FP32深度学习(DL)、神经网络训练相对于FP32有更快的计算速度和更低的内存使用量
BF1616位低于FP16宽于FP16与FP16相似混合精度训练、DL性能各异,但通常允许比FP16更快的训练和更宽的范围
FP88位四者中最低由指数和尾数指定(例如,最多+/-57344)四者中最低某些DL架构,尽管支持可能有限最快的计算速度,四者中最低的内存使用量,但精度较低
  • FP32 (32位浮点)

    • 最初由于3D游戏中所需的计算而被GPU重点关注。
    • 通常用于需要高精度的应用,如高性能计算(HPC)。
  • FP16 (16位浮点)

    • 也被称为半精度浮点。
    • 主要用于深度学习(DL)应用,因为它需要的内存是FP32的一半,理论上计算时间也比FP32少。
    • 由某些GPU架构支持,如NVIDIA的V100 GPU,其中包含支持混合精度训练的张量核心。
  • BF16 (Bfloat16或Brain Floating Point 16)

    • 是FP16和FP32的交叉。
    • 有效加速了许多深度学习模型的收敛,同时保持了大的动态范围。
  • FP8 (8位浮点)

    • 提供四者中最快的计算速度和最低的内存使用量,但精度较低。
    • 存储的值的精度较低是其权衡之处。
    • FP8的支持和应用可能比其他格式更有限,可能特定于某些架构,如NVIDIA的Hopper。

这些格式在精度和内存使用之间提供了权衡,像FP16、BF16和FP8这样的低位格式允许更快的计算和减少的内存使用,但是以精度为代价。它们在不同的计算任务中起着重要作用,特别是在深度学习和神经网络训练领域,其中精度、速度和内存使用之间的平衡至关重要。

FP16与BF16的区别

BF16 (Bfloat16) 和 FP16 (半精度浮点数) 是两种不同的浮点数表示格式,它们都使用 16 位来存储数值,但是它们在符号位、指数部分和尾数部分的分配上有所不同。下面通过一个比喻来形象化解释它们之间的区别:

想象一下,我们有两个不同品牌的16格储物柜来存放各种各样的物品。每个格子可以看作是一位,总共有16位。我们可以将这两个储物柜分别比作是BF16和FP16。

  1. FP16(半精度浮点数)的储物柜:

    • FP16的储物柜有1个格子用于存放符号位(正负号),5个格子用于存放指数,以及10个格子用于存放尾数。
    • 这个储物柜能存放比较多样化的物品,因为它有10个格子用于存放尾数,这意味着它能够比较精细地表示数值,但是它的指数范围(由5格格子决定)相对较小,所以它能覆盖的数值范围不是很大。
  2. BF16(Bfloat16)的储物柜:

    • BF16的储物柜也有1个格子用于存放符号位,但它有8个格子用于存放指数,只有7个格子用于存放尾数。
    • 这个储物柜的特点是能存放各种大小的物品,因为它有8个格子用于存放指数,这意味着它能覆盖一个非常大的数值范围。但是它的尾数部分较小(只有7格格子),所以它表示数值的精细程度不如FP16。

通过这个比喻,你可以理解到BF16和FP16之间的区别主要在于它们如何在指数和尾数之间分配位数,从而影响到它们能够表示的数值范围和精度。FP16更倾向于提供更高的精度,而BF16更倾向于提供更大的数值范围。

为什么大语言模型通常使用FP32精度训练

大型语言模型通常使用FP32(32位浮点)精度进行训练,因为其较高的数值精度可以带来更好的整体模型。以下是一些关键点:

  1. 较高的数值精度:FP32比如FP16(16位浮点)这样的低精度格式提供更高的数值精度。这种更高的精度可以在训练期间导致更准确的计算,从而产生更有效的模型。

  2. 稳定性:在像FP16这样的低精度格式中进行训练可能会引入数值稳定性问题。例如,梯度下溢或溢出的机会更高,优化器的计算精度较低,累加器超出数据类型的范围的风险更高。

  3. 兼容性:像PyTorch这样的深度学习框架带有内置的工具来处理FP16的限制,但即使有了这些安全检查,由于参数或梯度超出可用范围,大型训练工作常常失败。

然而,尽管有这些优势,FP32也带来了更大的内存和训练时间要求。为了缓解这些问题,经常使用混合精度训练。混合精度训练将一些训练操作放在FP16而不是FP32中。在FP16中进行的操作需要较少的内存,并且在现代GPU上的处理速度可以比FP32快达8倍。尽管精度较低,但大多数在FP16中训练的模型没有显示任何可测量的性能下降。

标签:#FP16##FP32##大模型训练##精度# 时间:2023/10/30 20:48:01 作者:小木

在大语言模型的训练和应用中,计算精度是一个非常重要的概念,本文将详细解释关于大语言模型中FP32、FP16等精度概念,并说明为什么大语言模型的训练通常使用FP32精度。

浮点运算中的精度概念

让我们通过一个简单的比喻来理解精度的概念。假设你有一个非常精细的尺子,它可以测量到毫米级别的长度。但是如果你要测量更小的长度,比如微米或纳米级别,这个尺子就不够用了。在这个例子中,尺子的精度就是毫米,它不能测量比毫米更小的单位。

现在,将这个比喻应用到计算机的浮点计算中。计算机在进行数值运算时,有一个固定的位数来表示数值,就像尺子有固定的长度和刻度一样。这个固定的位数决定了计算机的“尺子”能够多么精细地测量数值。如果一个数值的真实值非常小,或者两个数值非常接近,计算机的“尺子”可能就不能准确地测量它们,这就是精度问题。

为什么会有精度的概念呢?这主要是因为计算机的存储空间是有限的。每一个数都需要一些存储空间来表示,而存储空间的大小限制了能够表示的数的精度。如果我们想要更高的精度,就需要更多的存储空间和计算资源,这可能会增加计算的复杂性和成本。所以,精度是我们在使用计算机进行数值计算时必须考虑的一个重要因素,它是我们在追求准确结果和节省计算资源之间需要做出的一种权衡。

计算几种几种典型的精度(FP32、FP16、BF16、FP8)表示

FP32、FP16、BF16和FP8都是计算中使用的数字表示形式,特别是在浮点运算领域。这些格式主要通过它们使用的位数来区分,这影响了它们的精度、范围和内存要求。下面是一个表格形式呈现的这些格式的比较:

格式位大小精度范围内存使用量应用性能
FP3232位3D游戏、高性能计算(HPC)标准
FP1616位低于FP32狭于FP32低于FP32深度学习(DL)、神经网络训练相对于FP32有更快的计算速度和更低的内存使用量
BF1616位低于FP16宽于FP16与FP16相似混合精度训练、DL性能各异,但通常允许比FP16更快的训练和更宽的范围
FP88位四者中最低由指数和尾数指定(例如,最多+/-57344)四者中最低某些DL架构,尽管支持可能有限最快的计算速度,四者中最低的内存使用量,但精度较低
  • FP32 (32位浮点)

    • 最初由于3D游戏中所需的计算而被GPU重点关注。
    • 通常用于需要高精度的应用,如高性能计算(HPC)。
  • FP16 (16位浮点)

    • 也被称为半精度浮点。
    • 主要用于深度学习(DL)应用,因为它需要的内存是FP32的一半,理论上计算时间也比FP32少。
    • 由某些GPU架构支持,如NVIDIA的V100 GPU,其中包含支持混合精度训练的张量核心。
  • BF16 (Bfloat16或Brain Floating Point 16)

    • 是FP16和FP32的交叉。
    • 有效加速了许多深度学习模型的收敛,同时保持了大的动态范围。
  • FP8 (8位浮点)

    • 提供四者中最快的计算速度和最低的内存使用量,但精度较低。
    • 存储的值的精度较低是其权衡之处。
    • FP8的支持和应用可能比其他格式更有限,可能特定于某些架构,如NVIDIA的Hopper。

这些格式在精度和内存使用之间提供了权衡,像FP16、BF16和FP8这样的低位格式允许更快的计算和减少的内存使用,但是以精度为代价。它们在不同的计算任务中起着重要作用,特别是在深度学习和神经网络训练领域,其中精度、速度和内存使用之间的平衡至关重要。

FP16与BF16的区别

BF16 (Bfloat16) 和 FP16 (半精度浮点数) 是两种不同的浮点数表示格式,它们都使用 16 位来存储数值,但是它们在符号位、指数部分和尾数部分的分配上有所不同。下面通过一个比喻来形象化解释它们之间的区别:

想象一下,我们有两个不同品牌的16格储物柜来存放各种各样的物品。每个格子可以看作是一位,总共有16位。我们可以将这两个储物柜分别比作是BF16和FP16。

  1. FP16(半精度浮点数)的储物柜:

    • FP16的储物柜有1个格子用于存放符号位(正负号),5个格子用于存放指数,以及10个格子用于存放尾数。
    • 这个储物柜能存放比较多样化的物品,因为它有10个格子用于存放尾数,这意味着它能够比较精细地表示数值,但是它的指数范围(由5格格子决定)相对较小,所以它能覆盖的数值范围不是很大。
  2. BF16(Bfloat16)的储物柜:

    • BF16的储物柜也有1个格子用于存放符号位,但它有8个格子用于存放指数,只有7个格子用于存放尾数。
    • 这个储物柜的特点是能存放各种大小的物品,因为它有8个格子用于存放指数,这意味着它能覆盖一个非常大的数值范围。但是它的尾数部分较小(只有7格格子),所以它表示数值的精细程度不如FP16。

通过这个比喻,你可以理解到BF16和FP16之间的区别主要在于它们如何在指数和尾数之间分配位数,从而影响到它们能够表示的数值范围和精度。FP16更倾向于提供更高的精度,而BF16更倾向于提供更大的数值范围。

为什么大语言模型通常使用FP32精度训练

大型语言模型通常使用FP32(32位浮点)精度进行训练,因为其较高的数值精度可以带来更好的整体模型。以下是一些关键点:

  1. 较高的数值精度:FP32比如FP16(16位浮点)这样的低精度格式提供更高的数值精度。这种更高的精度可以在训练期间导致更准确的计算,从而产生更有效的模型。

  2. 稳定性:在像FP16这样的低精度格式中进行训练可能会引入数值稳定性问题。例如,梯度下溢或溢出的机会更高,优化器的计算精度较低,累加器超出数据类型的范围的风险更高。

  3. 兼容性:像PyTorch这样的深度学习框架带有内置的工具来处理FP16的限制,但即使有了这些安全检查,由于参数或梯度超出可用范围,大型训练工作常常失败。

然而,尽管有这些优势,FP32也带来了更大的内存和训练时间要求。为了缓解这些问题,经常使用混合精度训练。混合精度训练将一些训练操作放在FP16而不是FP32中。在FP16中进行的操作需要较少的内存,并且在现代GPU上的处理速度可以比FP32快达8倍。尽管精度较低,但大多数在FP16中训练的模型没有显示任何可测量的性能下降。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值