UR5e机器人动力学

机器人动力学研究力与运动之间的关系,核心目标是建立关节力矩关节位置、速度、加速度的数学关系。动力学模型通常分为:

  • 正向动力学:已知关节力矩,计算末端执行器的运动(加速度)。

  • 逆向动力学:已知期望的运动(位置、速度、加速度),计算所需的关节力矩。

function r = mdl_ur5()
    
    deg = pi/180;
    
    % robot length values (metres)
    a = [0, -0.42500, -0.39225, 0, 0, 0]';

    d = [0.089459, 0, 0, 0.10915, 0.09465, 0.0823]';

    alpha = [1.570796327, 0, 0, 1.570796327, -1.570796327, 0]';
    
    theta = zeros(6,1);
    
    DH = [theta d a alpha];

    mass = [3.7000, 8.3930, 2.33, 1.2190, 1.2190, 0.1897];

    center_of_mass = [
        0,-0.02561, 0.00193
        0.2125, 0, 0.11336
        0.15, 0, 0.0265
        0, -0.0018, 0.01634
        0, -0.0018, 0.01634
        0, 0, -0.001159];
    
    
    % and build a serial link manipulator
    
    % offsets from the table on page 4, "Mico" angles are the passed joint
    % angles.  "DH Algo" are the result after adding the joint angle offset.

    robot = SerialLink(DH, ...
        'name', 'UR5', 'manufacturer', 'Universal Robotics');
    
    % add the mass data, no inertia available
    links = robot.links;
    for i=1:6
        links(i).m = mass(i);
        links(i).r = center_of_mass(i,:);
    end
    
    links(1).I = diag([0.010267495893,0.010267495893,0.00666]);
    links(2).I = diag([0.22689067591,0.22689067591 ,0.0151074]);
    links(3).I = diag([0.049443313556,0.049443313556,0.004095]);
    links(4).I = diag([0.111172755531,0.111172755531,0.21942]);
    links(5).I = diag([0.111172755531,0.111172755531,0.21942]);
    links(6).I = diag([0.0171364731454,0.0171364731454,0.033822]);
    
     links(1).Jm = 33e-6;
     links(2).Jm = 33e-6;
     links(3).Jm = 33e-6;
     links(4).Jm = 33e-6;
     links(5).Jm = 33e-6;
     links(6).Jm = 33e-6;
     links(1).qlim = [-180 180]*deg;
     links(2).qlim = [-180 180]*deg;
     links(3).qlim = [-180 180]*deg;
     links(4).qlim = [-180 180]*deg;
     links(5).qlim = [-180 180]*deg;
     links(6).qlim = [-180 180]*deg;

    
    % place the variables into the global workspace
    if nargin == 1
        r = robot;
    elseif nargin == 0
        assignin('caller', 'ur5', robot);
        assignin('caller', 'qz', [0 0 0 0 0 0]); % zero angles
        assignin('caller', 'qr', [180 0 0 0 90 0]*deg); % vertical pose as per Fig 2
    end
end

% 定义 UR5e 各关节的 DH 参数(标准 DH 模型)
L1 = Link([0 0.1625 0 pi/2], 'standard');
L2 = Link([0 0 -0.425 0], 'standard');
L3 = Link([0 0 -0.3922 0], 'standard');
L4 = Link([0 0.1333 0 pi/2], 'standard');
L5 = Link([0 0.0997 0 -pi/2], 'standard');
L6 = Link([0 0.0996 0 0], 'standard');

% 创建 UR5e 机器人对象
ur5e = SerialLink([L1 L2 L3 L4 L5 L6], 'name', 'UR5e');

% 进入可视化示教模式
ur5e.teach();

https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/

正向动力学方程

### UR5e机器人动力学模型概述 UR5e 是一种六自由度多关节工业机器人,其动力学模型用于描述各关节运动与外部施加力之间的关系。这种模型不仅考虑了单个关节的动力学特性,还涵盖了不同关节间的耦合效应以及机器人与外界环境的交互影响[^1]。 #### 动力学建模方法 针对 UR5e 的动力学建模,主要采用两种经典方法:拉格朗日法和牛顿-欧拉法。这两种方法各有优劣,在实际应用中可根据需求选择适合的方法。 ##### 拉格朗日法 (Lagrangian Method) 拉格朗日法基于能量守恒原理构建系统的动力学方程。通过定义系统的总动能 \( T \) 和势能 \( V \),可以得到拉格朗日量 \( L = T - V \)。随后利用拉格朗日方程: \[ \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = Q_i, \] 其中 \( q_i \) 表示第 \( i \) 关节的角度变量,\( \dot{q}_i \) 为其时间导数(角速度),而 \( Q_i \) 则表示作用于该关节上的广义力。这种方法的优点在于形式统一、易于处理复杂的约束条件,并且可以直接引入系统中的非保守力项[^2]。 以下是使用 Python 实现的一个简单例子来计算某特定配置下的雅可比矩阵: ```python import numpy as np from scipy.spatial.transform import Rotation as R def compute_jacobian(q): # 假设已知 DH 参数并初始化零矩阵 J J = np.zeros((6, 6)) # 计算每一列 jacobian 矩阵... return J # 测试函数 if __name__ == "__main__": joint_angles = [0.1, -0.2, 0.3, -0.4, 0.5, -0.6] jac = compute_jacobian(joint_angles) print("Jacobian Matrix:\n", jac) ``` ##### 牛顿-欧拉法 (Newton-Euler Method) 相比之下,牛顿-欧拉法则侧重于直接分析刚体的平动和转动行为。它通过对每一个连杆分别应用线性和角动量定理逐步向前推导正向解或者反向迭代逆向求解。此过程相对直观明了,尤其适用于实时控制系统设计阶段快速估算所需驱动力矩的情况。 然而需要注意的是,由于涉及到大量矢量运算操作,因此编程实现起来可能稍显繁琐一些;不过借助现代数值库比如 NumPy 或 MATLAB 可大大简化这些工作流程。 --- ### 应用场景探讨 在实际工程实践中,精确建立好的动力学模型可用于以下几个方面: 1. **轨迹规划优化** 准确掌握各个时刻下电机应该输出多少转矩才能完成指定路径追踪任务至关重要。这有助于减少能耗同时提高工作效率。 2. **阻抗/导纳控制** 当面对柔性装配作业时,传统的位置伺服模式往往难以满足精度要求。此时可以通过调整虚拟弹簧系数等方式灵活应对接触力变化从而更好地保护设备安全运行. 3. **碰撞检测与响应机制开发** 结合传感器反馈数据及时发现异常状况进而采取适当措施防止损坏发生显得尤为重要. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值