UE5 帧数优化思路

A、思路

1、直接在GM的事件beginplay中改可延展性相对质量级别,

改为1或2,最简单粗暴的方式,而效果明显,帧数提高一倍,GPU占用率与显存占用直接下降一大截。在物体密集的地方卡顿会缓解很多,物体少的地方则帧数直接起飞。

默认是0,过场动画级别,1为极高,2为高,3为中,4为低。

相对质量级别关系到画质的各个方面,如视野距离、地形、植物;阴影、全局光照、反射;纹理、特效、着色、后期处理、抗锯齿。

默认是用最高级别画质,所以画质最高而帧数低。

4的帧数最高,但画面不忍直视。

2、修改地形层的LOD

LOD最大等级-1改为1,最多为9-此时画质最低,

LOD分布最近分区大小3改为2或1.5,最低为1,

启用Nanite,取消部分阴影。

实质都是减负,降低当前视口中显示的内容量。

对GPU负载也有较明显的影响,能降低一截。

3、修改植被密度

草、树等装饰物的默认密度都很高,还有风力影响而摆动等,好看而影响性能。

密度降到1/10,效果立竿见影。

B、参考图

### UE5手势识别实现方法 在Unreal Engine 5 (UE5) 中实现手势识别功能,可以通过多种方式完成。以下是基于现有技术栈和工具链的手势识别实现方案。 #### 使用Oculus提供的示例项目 可以利用Oculus公司发布的 `Unreal-HandGameplay` 示例项目作为基础框架来学习并扩展手势识别的功能[^2]。此项目展示了如何通过手部追踪数据驱动角色动作以及交互逻辑的设计思路。开发者可以从该项目中提取核心代码片段,并将其适配到自己的项目需求下。 #### 虚拟现实设备支持 为了使应用程序能够接收来自硬件传感器捕捉到的手指位置信息,在配置阶段需确认所使用的头显是否具备内置控制器或者外部摄像头跟踪能力。例如Meta Quest系列提供了完整的双手姿态估计服务;而HTC Vive则依赖于SteamVR插件获取相应输入源[^1]。 #### 数据处理流程概述 一旦获得了原始骨骼关节坐标之后,则需要经历以下几个主要步骤才能最终达到精确判断特定手势的目的: 1. **预处理**: 对采集来的三维空间点云进行去噪和平滑操作以减少误差影响。 2. **特征提取**: 定义若干关键部位之间的距离关系或角度变化量作为衡量标准用于区分不同类别模式。 3. **分类器训练**: 如果采用机器学习算法的话, 需要准备足够的标注样本集用来构建模型参数优化过程. 4. **实时预测**: 将新到来的数据帧送入已训练好的网络结构当中得到最可能匹配的结果标签. 下面给出一段简单的蓝图脚本伪代码表示上述部分逻辑: ```blueprint // 初始化变量 Set HandPose as Unknown; // 获取当前帧的手部骨架节点数组 Get Current Frame Bone Positions -> Array[BonePosition]; // 计算目标手指尖端相对手掌中心偏移向量长度 Calculate Distance Between ThumbTip & PalmCenter -> Float[ThumbDistance]; ... // 条件分支检测指定阈值范围内是否存在有效触发条件 If ((IndexFingerState == Extended) && (MiddleFingerState == Folded)) { Set HandPose as VictorySign; } Else If (...) { ... } // 输出最终判定结论供其他模块调用 Return Final Gesture Label; ``` 以上仅为示意性质的内容展示实际应用时还需要考虑更多细节因素比如性能开销控制等方面的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值