机器人学习--定位、建图、SLAM(声呐、激光等扫描束方案)的发展史

本文作为学习激光SLAM尤其是2D激光SLAM的学习笔记,理清楚很多问题的前因后果,历史发展事件等, 读史使人明智。

假设已经知道了激光SLAM的代表方案:ROS wiki官方集成了的2D激光slam方案, 基于滤波的gmapping (2007年)和基于图优化的cartographer(Google团队 2016年)的基本历史,之后的发展参阅文章 和 3D激光slam LOAM等方案。

着重,尽量理清之前的历史。

说明1:在激光雷达 laser lidar使用于slam之前,用的是声呐或者超声波等传感器。机器人周围放置N个声呐测距。 

说明2:在slam(同时定位和建图,强调同时实时性)之前,建图和定位工作一般都是单独研究的。

说明3:现在ROS wiki中使用的集成好的slam包或者导航包,构建的占用栅格地图(occupancy grid map)是后来才发明出来的,最开始是其他类型的地图。

说明4:1980年前后,欧美已经开始研究机器人的导航问题、建图、定位、路径规划等。

 

Mapping-建图

1985年,占据栅格地图(occupancy grid map)的首作(大概是) 

H. Moravec and A. Elfes, "High resolution maps from wide angle sonar," Proceedings. 1985 IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 1985, pp. 116-121, doi: 10.1109/ROBOT.1985.1087316.

 

2002年,Robotic Mapping: A Survey,Sebastian Thrun 谷歌无人驾驶之父

---- 回顾建图历史,解释为什么用概率方法,卡尔曼滤波 期望最大值模型, 栅格地图,物体或障碍物地图,动态环境建图

PDF下载链接:http://robots.stanford.edu/papers/thrun.mapping-tr.pdf

 

Localization-定位

1999年,蒙特卡罗定位(基于粒子滤波)Monte Carlo localization (现在大部分基于激光slam的建图之后 导航后再定位都是基于蒙特卡罗定位方法的改进)(ROS导航包是ACML)

F. Dellaert, D. Fox, W. Burgard and S. Thrun, "Monte Carlo localization for mobile robots," Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA, 1999, pp. 1322-1328 vol.2, doi: 10.1109/ROBOT.1999.772544.     

PDF链接:http://web.cecs.pdx.edu/~mperkows/CLASS_479/S2006/localization-monte-carlo.pdf

其中,后两个作者是大名鼎鼎的《probabilistic robotics》中文版《概率机器人》的作者,其中Sebastian thrun 号称谷歌无人驾驶之父。

 

SLAM-同时定位与建图

----概念提出

1986年

Smith RC, Cheeseman P. On the Representation and Estimation of Spatial Uncertainty. The International Journal of Robotics Research. 1986;5(4):56-68. doi:10.1177/027836498600500404

 

1990s前的另一个研究队伍大咖 Hugh F. Durrant-Whyte 展开SLAM的 研究。

J. J. Leonard. Directed Sonar Sensing for Mobile Robot Navigation. PhD thesis,University of Oxford, 1990.

J. J. Leonard and H. F. Durrant-Whyte. Directed Sonar Navigation. Kluwer AcademicPress, 1992.

 

2000年,Rao-Blackwellised Particle Filtering 粒子滤波用在状态估计问题上。

A. Doucet, J.F.G. de Freitas, K. Murphy, and S. Russel. Rao-Blackwellized partcile filtering for dynamic bayesian networks. In Proc. of the Conf. on Uncertainty in Artificial Intelligence (UAI), pages 176–183, Stanford, CA, USA, 2000

PDF下载地址:https://arxiv.org/ftp/arxiv/papers/1301/1301.3853.pdf

 

----基于滤波的SLAM方案

2002年,FastSLAM 1.0 ,用到了Rao-Blackwellised Particle Filtering

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to simultaneous localization and mapping. In Proc. of the National Conference on Artificial Intelligence (AAAI), pages 593–598, Edmonton, Canada, 2002.
PDF下载地址:http://robots.stanford.edu/papers/montemerlo.fastslam-tr.pdf

2003年,FastSLAM 2.0 及扩展版本

M. Montemerlo and S. Thrun. Simultaneous localization and mapping with unknown data association using FastSLAM. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages 1985–1991, Taipei, Taiwan, 2003
FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges

PDF下载:http://www4.cs.umanitoba.ca/~jacky/Teaching/Courses/74.795-LocalVision/ReadingList/fastslam-an-improved-particle.pdf

2007年,Gmapping,集成在ROS的slam方案之一。Rao-Blackwellised Particle Filtering

G. Grisetti, C. Stachniss and W. Burgard, "Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters," in IEEE Transactions on Robotics, vol. 23, no. 1, pp. 34-46, Feb. 2007, doi: 10.1109/TRO.2006.889486.

2012年,EKF, UKF, FastSLAM2.0, and UKF-based FastSLAM的比较

Z. Kurt-Yavuz and S. Yavuz, "A comparison of EKF, UKF, FastSLAM2.0, and UKF-based FastSLAM algorithms," 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES), Lisbon, 2012, pp. 37-43, doi: 10.1109/INES.2012.6249866.

 

----基于图优化的SLAM方案

 

1997年,第一次用图优化方案解决slam问题,

Lu, F. Milios, E. Globally Consistent Range Scan Alignment for Environment Mapping

2016年,Cartographer,谷歌公司团队产品(ROS slam包中已集成)

W. Hess, D. Kohler, H. Rapp and D. Andor, "Real-time loop closure in 2D LIDAR SLAM," 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 1271-1278, doi: 10.1109/ICRA.2016.7487258.

 

 

 

补充-视觉SLAM 

1.至于视觉SLAM方面,上世纪80年代陆续已经有人在研究,很多技术和论文最后汇总到了多视几何那本书中,大名鼎鼎的相机标定张正友法的张正友,那个年代就已经在法国研究视觉,玩过立体视觉导航的机器人。

2.在帝国理工学院的视觉大咖 Adrew Davison ,MonoSLAM(2007年)及其2003年的single camera slam方案之前,所有人或者大部分人认为视觉slam必须得靠 立体视觉 stereo(双目)才能搞定,直到大名鼎鼎的MonoSLAM出现,后面陆陆续续各种视觉slam出现和完善,如ORB-SLAM系列,很多语义slam都将ORB-SLAM作为现成的slam框架使用,事实上orbslam官方代码说明也说了它是一个slam的library,类似于学习C语言的库函数一样可以直接调用来使用,可见其成熟程度。

详细参考:https://blog.csdn.net/GGY1102/article/details/103396030

 

<think>好的,我现在需要处理用户关于声呐SLAM技术在机器人中的实现或相关信息的查询。首先,我得回忆一下SLAM的基本概念,即同时定位与地声呐作为传感器的一种,常用于水下环境,因为电磁波在水中衰减快,而声波更适合。用户可能对水下机器人应用感兴趣,比如自主水下航行器(AUV)或水下探测。 接下来,我得考虑声呐SLAM的关键技术。可能需要提到传感器类型,如机械扫描声呐、多波声呐或侧扫声呐。然后,算法方面,传统方法如扩展卡尔曼滤波(EKF-SLAM)或粒子滤波(FastSLAM),以及现代方法如基于优化的框架(例如g2o或GTSAM)。此外,数据关联和环路闭合检测在声纳SLAM中尤为重要,因为声呐数据噪声较大,特征提取较困难。 然后,实现步骤可能包括数据预处理(去噪、特征提取)、运动预测、观测更新、地和优化。需要引用相关的文献,比如用户提供的引用[4]提到信息形式的稀疏性,这可能涉及稀疏矩阵优化方法。同时,用户提供的引用[2]讨论了移动机器人定位技术,可以关联到传感器融合的部分。 还要考虑挑战,比如声呐的低分辨率、多路径干扰和动态环境的影响。可能需要提到如何处理这些挑战,例如多传感器融合(如结合IMU或深度传感器)或使用机器学方法进行特征识别。 最后,生成相关问题时要围绕技术细节、应用案例、算法比较和挑战展开。确保引用正确,比如信息稀疏性来自引用[4],传感器技术引用[2],计算机视觉相关引用[3]可能用于对比声呐与视觉SLAM的不同。</think>### 声呐SLAM技术实现与信息 #### 1. **技术原理与传感器选择** 声呐SLAM(Simultaneous Localization and Mapping)通过声波传感器实现水下或复杂环境中的定位。常用传感器包括: - **机械扫描声呐**:通过旋转发射声波获取周围环境点云数据; - **多波声呐**:同时发射多声波,提高数据采集效率; - **侧扫声呐**(SSS):生成高分辨率海底地形像[^2]。 其核心方程为SLAM的后验概率模: $$ p(x_t, m | z_{1:t}, u_{1:t}) $$ 其中$x_t$为机器人位姿,$m$为环境地,$z$为观测数据,$u$为控制输入。 #### 2. **算法实现方法** - **传统滤波方法** - **EKF-SLAM**:将非线性观测模型线性化,维护高斯分布状态估计; - **FastSLAM**:采用粒子滤波框架,每个粒子携带独立地副本; ```python # 简化的粒子滤波伪代码 particles = initialize_particles() for observation in sensor_data: particles = predict_motion(particles, odometry) weights = update_weights(particles, observation) particles = resample(particles, weights) ``` [^4]中提到,信息形式的稀疏性可通过稀疏矩阵优化计算效率。 - **现代优化方法** 采用**因子优化**(Factor Graph Optimization): $$ X^* = \arg\min_X \sum_i ||h_i(x_i) - z_i||_{\Sigma_i}^2 $$ 使用g2o或GTSAM等工具包实现,特别适合处理闭环检测问题。 #### 3. **关键技术挑战与解决方案** | 挑战 | 解决方案 | |------|----------| | 声呐数据噪声大 | 自适应滤波+多假设数据关联 | | 特征稀疏性 | 结合光度特征与几何特征融合 | | 动态水环境影响 | 多普勒补偿+环境扰动模 | | 计算资源受限 | 滑动窗口优化+稀疏化操作 | #### 4. **典型应用场景** - 水下考古机器人沉船探测 - 管道检测机器人基础设施维护 - 浑浊水域搜救任务(见文献中的移动机器人定位案例)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值