学习笔记,不喜勿喷,侵权立删,祝愿大家生活越来越好!
一、切线空间
在《OpenGL基础11:空间》中提到了观察空间、裁剪空间、世界空间等。切线空间和它们一样,都属于坐标空间
上面就是一个切线空间的例子,对于切线空间:
- N:该顶点本身的法线方向,z轴
- T:该顶点的一条切线,但由于切线数量有无数条,其一般由模型给定,对应着UV图中的U,也就是使用和纹理坐标方向相同的那条
- B:由前两者叉乘得到,对应着UV图中的V
UV图:用于告知计算机,如何用2维的贴图包住3维的物体,本质上UV图提供了一种模型表面与纹理图像之间的连接关系,也就是确定纹理图像上的每一个像素应该放置在模型表面的哪一个顶点上,如果没有UV图,多边形网格将不能被渲染出纹理,其中U和V分别指的是纹理空间的水平轴和垂直轴
二、为什么需要切线空间
在此之前,先需要大致了解一下法线贴图(Normal Mapping):为了得到正确的光照,需要知道物体每个顶点的法向量,但为了保证效率,一般物体的顶点不会太多,就像一块砖块,它的表面往往凹凸不平,但事实上它可能单纯的只是一个立方体,每一面给上了一个贴图。这样如果还想要体现出物体“凹凸不平”的效果,就需要用到法线贴图或者高度贴图,也就是对于纹理的每一个像素,都指定一个特定的法向量!
很巧,法向量是个3维向量,而颜色正好也是一个3维向量,所以直接将向量信息存储成颜色信息没有任何的压力
可是这样就出现了另一个问题:就像下图是一个黑色小包模型的一部分,中间有两个拉链拉头,这两个子模型是完全一样的,唯一的区别就是位置不同从而光照的效果不同。那么很明显,为了节省空间和性能,用的也会是同样的贴图,但是!他们的法向量却不一样,也就是说这两个完全相同的物体并不能使用同一张法线贴图(法线贴图可以说只是个数据存储媒介,和颜色没有关系)
确实可以为这些相同的子模型准备不同的法线贴图,就像一个六个面相同的立方体,为它专门准备6张法线贴图,但是有可能这样的子模型特别多,并且方向都不相同,这个时候还准备不同的法线贴图就比较尴尬了
上面的问题归根结底就是物体的朝向问题,我们只要找到这样的一个空间:无论当前是什么朝向,所有“纹理像素点”的法向量一定都是不变的,并且可以通过空间变换就可以得到世界坐标下正确的法向量,就可以解决问题了。所有相同的面,都可以赋予同样的法线贴图。
这个空间就是切线空间,酷不酷?
三、如何求出切线空间
切线空间是什么?对于一个网格模型,我们逐顶点来分析,每个顶点都有着自己的切线空间,如下图所示,我们可以将其称为TBN空间。其中N代表该点处的法线,T(tangent)和B(binormal)都是该点处的切线。由于一个点处的切线有无数条,我们指定T切线是沿着纹理的u坐标方向的,B切线是沿着纹理的v坐标方向的。
从最简单的开始算:一个4个顶点100%平坦的平面,怎么求出它的切线空间呢?
T (Tangent) B (Bitangent) N (Normal) 向量一个一个来:
N 就不说了,它就是法向量,然后就是 T 切线向量:
肯定的,T、B、N都是单位长度,这样的话根据右图可以得到:
只要理解了这个公式后面就都好办了,首先可以看出,这是求的顶点P2的切线空间,而P1、P2、P3是当前P2所在的一个三角形片元,其次,E1、E2其实已经当前点的其中的两条切线了,只不过为了统一切线,切线的方向必须是纹理UV的方向,正好点 P1和P3的纹理坐标映射在主副切线方向上的向量之和正是向量E1和向量E2之和,同时也是说E2是三角形的一条边,这个三角形的另外两条边是U2和
V2 ,它们与切线向量T和副切线向量B方向相同。
既然 、
、
都是已知的,那么就可以求出
和
了:
上面的公式可以写成: