在SwissTargetsPrediction数据库中预测成分靶点

文章详细阐述了多肽成分的筛选过程,包括使用UniPort进行蛋白操作、Excel初步筛查、SwissADME获取SMILES结构、PubChem查找CanonicalSmiles以及SwissTargetPrediction进行靶点预测。重点强调了概率值在筛选靶点中的重要性,保留Probability值大于0的靶点,并处理了靶点名称可能出现的重复问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.对筛选的多肽成分进行靶点预测:

①用Uniport中的蛋白进行一系列操作(水解,挑选2~8短肽,活性预测,毒性,过敏性预测,胃肠吸收度,半衰期和苦味的预测、生物活性功能预测)进行多肽的筛选。

②或者在EXCEL筛查短肽(=IF(LEN(A1)<=7,"T","F"),可惜最短都是7肽。

③用氨基酸单字符序列(AGW)在 Swissadme 里找到多肽对应的smiles结构(例如下图)

 在框①里输入短肽单字符序列,框③就是得到的Smiles编号

解决在swissADME里得不到swiss号:

可以到 纽普生物  里去查找。

④用smiles编号在pubchem里查找,得到对应的Canonical Smiles(如下图)

④打开 SwissTargetPrediction ,进行成分靶点预测(操作如下图)

 种类只能选择人类和小鼠(框①),在框②里输入Swiss编号,点击Predict target按钮(框③)

等待进条度加载完毕,保存预测的靶点到本地。

2.下载靶点,对靶点进行进一步筛选处理:

有多个成分,就能预测到多个靶点文件,将这些文件的【Target】和【Common name】汇总到一个新建表格,新增一列是这些靶点的药物成分。

Probability值越高,成分和靶点的关联就越强(会有为0的情况,要去掉)

 一般,我们保留Probability值0的靶点

在视频教程里(下图),会在前两列添加Mol_ID和分子名(嗯,可做可不做)

 

另外,在【Common name】会出现下面这类情况:一个靶点对应两个Commom name

 一个靶点有两个common name,我们需要只保留第一个(操作如图): 

在Excel里,选择【数据】-->【分列】,按空格进行分列,将分列出的新列删除。

绘制成分—靶点网络(详见笔记:成分-靶点网络构建 )

为了创建或分析中药成分靶点之间的网络图,可以采取以下几种方法: 选择适合的软件工具 对于非编程人员来说,可以选择一些图形界面友好的生物信息学平台或者专门用于绘制网络图的应用程序。例如Cytoscape是一个广泛使用的开源软件,支持导入多种数据格式来构建复杂的网络图表。 收集整理数据集 需要从可靠的数据库中搜集有关中药化学成分及其作用靶点的信息。TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) 是一个专注于传统中医药系统的药理学数据库,提供了大量关于中药材、有效成分及潜在治疗目标的数据。 应用数据分析算法 利用统计学习或机器学习的方法处理所获得的数据以发现成分-靶点间的关联模式。Python 和 R 这样的编程语言拥有丰富的包可以帮助完成这项工作;比如NetworkX(适用于 Python)可用于建立复杂网络模型并执行进一步的拓扑属性计算。 可视化结果呈现 一旦确定了成分靶点的关系,则可以通过各种绘图函数将这些联系直观地表示出来。Matplotlib, Seaborn 或者 ggplot2 等都是优秀的绘图库选项,在此基础上还可以考虑采用D3.js这样的JavaScript框架实现交互式的在线展示效果。 分享研究成果 最后一步是撰写论文发表研究结论或将制作完成的网络图应用于实际临床指导当中去。确保所有的实验设计都符合伦理标准并且所有参与者都已经给予知情同意书。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黄思博呀

真的有人打赏啊,超级感谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值