CUT&Tag+RNA-seq关联分析的 5 个套路

CUT&Tag是研究蛋白和DNA互作的新兴实验方法,该方法是通过蛋白特异性抗体引导Protein A-Tn5酶在目标蛋白结合的DNA位置进行切割并且在序列两端加上测序接头,经过PCR扩增后形成可以用于高通量测序的文库,随后对文库进行测序分析从而解析与目标蛋白结合的DNA片段。

利用CUT&Tag,我们可以得到目标转录因子/辅因子/组蛋白结合位点信息,确定靶基因信息;对相关基因组功能元件(诸如启动子、增强子)进行注释分析;所需样本起始量低,适合珍惜样本(如胚胎细胞、数量有限的原代细胞、流式分选后的细胞等)。

单一组学分析可能无法完全揭示生物系统的复杂性,多种组学数据的整合可以通过构建生物分子网络和路径,揭示生物系统的整体性和系统性特征。CUT&Tag作为 2019年报道的蛋白和DNA互作的实验方法,发表过的研究已广泛应用多组学,其中最为普遍是“CUT&Tag+RNA-seq”组合。

CUT&Tag和RNA-seq关联分析也比较套路,一般有以下几种。

1 CUT&Tag关联基因和RNA-seq的差异表达基因进行overlap。

ChIP-seq数据差异分析拿到关联基因的基因集,与RNA-seq数据的差异表达基因的数据集取交集,这个结果通常用于筛选关键目的基因。一般是通过venn图进行可视化展示。网上有很多在线工具可以绘制venn图,当然爱基百客的云平台也提供venn图绘制的小工具。

图片

图:CUT&Tag和RNA-seq数据关联分析匹配基因[1]

图片

爱基百客云平台小工具

2.  对overlap过的基因进行功能分析。

功能分析可以分为通用的GO/KEGG分析,也可以根据已有的文献报道进行挖掘。

图片

overlap后的匹配的差异基因的GO分析[1]

3.  基因组浏览器可视化

确定目标基因后,可以对相关基因的mRNA水平和Peak进行联合可视化展示,结果类似下图。这一类结果通常是利用基因组浏览器(如IGV、UCSC Genome Brower等)展示特定区域的CUT&Tag和RNA-seq数据,直观观察转录因子结合位点、组蛋白修饰的分布和水平以及相应基因的表达水平。

图片

图:在MET基因座位上,叠加显示了CUT&Tag、ChIP-seq和RNA-seq的轨迹,展示了SET、CDK9、PP2A-A、PP2A-C和Pol II在染色质上的占据情况,以及在对照组和SET-KO细胞中的mRNA表达情况[2]

4.  基因调控网络图

利用软件工具如Cytoscape等,根据CUT&Tag和RNA-seq数据构建的基因表达调控网络,直观地展示转录因子、组蛋白修饰与目标基因之间的互相作用。

图片

图:预测的转录因子及其与超级增强子SE相关的差异表达基因的相互作用。[3]

5.  相关性分析

将基因表达水平的差异倍数和相关peak信号强度差异进行相关性分析。以下图为例,结果展示了基因表达变化与H3K36me3信号之间的相关性,挖掘其中调控的关系。

图片

图:基因表达变化与H3K36me3信号之间的相关性[4]

爱基百客专注于表观组学10年,提供领先的表观组学服务。在CUT&Tag上拥有丰富的经验,提供从方案设计、样本处理、建库测序、数据分析和验证一站式服务;另外,有云平台,多组学联合分析助力深度挖掘数据。目前,CUT&Tag正在做春季大促,有相关需求的老师欢迎咨询驻地销售或联系助理小爱。

图片

CUT&Tag产品介绍

CUT&Tag是研究蛋白和DNA互作的新兴实验方法,该方法是通过蛋白特异性抗体引导Protein A-Tn5酶在目标蛋白结合的DNA位置进行切割并且在序列两端加上测序接头,经过PCR扩增后形成可以用于高通量测序的文库,随后对文库进行测序分析从而解析与目标蛋白结合的DNA片段。

产品优势:

1. 无需甲醛交联,样本要求量低,背景干净,可重复性好;

2. 提供从方案设计,建库测序,到数据分析和验证一站式服务;

3. 云平台,多组学联合分析深度挖掘数据;

4. 项目经验丰富:

图片

实测数据

1. 抽核结果

提供“单细胞测序”标准的抽核解决方案。

图片

2. CUT&Tag酶切片段分布

转录因子/组蛋白修饰的酶切片段分布呈现周期性。

图片

3.reads密度分布图

reads在TSS附近呈现明显的富集。

图片

4.功能元件分布图

Peak在基因功能元件上分布。

图片

5.Peak可视化

图片

  • 参考文献

1. Di X, Xiang L and Jian Z (2023), YAPmediated mechanotransduction in urinary bladder remodeling: Based on RNA-seq and CUT&Tag.Front. Genet. 14:1106927.

2. Xu H, Wu D, Xiao MM, et al(2024), PP2A complex disruptor SET prompts widespread

3. hypertranscription of growth-essential genes in the pancreatic cancer cellsSci. Adv. 10, eadk6633.

4. Zeng J, Chen J, Li M, Zhong C, Liu Z,Wang Y, Li Y, Jiang F, Fang S and Zhong W (2023), Integrated high-throughput analysis identifies super enhancers in metastatic castration-resistant prostate cancer.Front. Pharmacol. 14:1191129.

5. Zhang, Y., Fang, Y., Tang, Y. et al (2022), SMYD5 catalyzes histone H3 lysine 36 trimethylation at promoters. Nat Commun 13, 3190

### 使用 CUT&Tag 进行数据分析的方法和工具 #### 工具准备 为了进行基于CUT&Tag技术的数据分析,需先准备好一系列必要的生物信息学工具。这些工具不仅有助于数据预处理,还支持后续的统计分析与可视化工作。 - **SRA Toolkit**: 用于从NCBI SRA数据库下载原始测序数据[^1]。 - **Bowtie2**: 实现快速而灵敏的读段比对到参考基因组上。 - **SAMtools 和 BEDTools**: 处理并转换由 Bowtie2 输出的 SAM/BAM 文件至其他格式以便进一步操作,如提取特定区域的信息或计算覆盖度等。 - **MACS2**: 鉴定 ChIP-seq 或者在此情况下 CUT&Tag 的 peak 峰位置,从而识别潜在的目标位点。 - **R 和 Ngsplot/Deeptools**: 提供强大的图形表示功能,可用于生成热图、密度分布图等多种类型的图表来直观呈现实验结果;同时也具备丰富的包库来进行高级别的统计测试以及机器学习建模等工作流的支持。 #### 数据处理流程概述 当获取到了经过质量控制后的 clean reads 后,则按照以下顺序依次执行各项任务: - 利用 `bowtie2` 将序列映射回相应的物种全基因组序列; - 对齐好的 bam 文件利用 samtools sort/index 排序索引,并通过 bedtools 获得目标区间内的 read counts 计数矩阵; - 应用 macs2 callpeak 寻找显著富集区段(peaks),进而得到可能存在的转录因子结合位点列表; - 结合 RNA-seq 表达谱资料找出共同变化趋势明显的候选调控元件集合,并借助 venn diagram 展示两者间的关系模式[^2]。 ```bash # 下载样本数据 prefetch --option-file sample_accessions.txt # 解压 fastq 格式的压缩包 fastq-dump --split-files *.sra # 构建 bowtie2 索引 bowtie2-build /path/to/reference_genome.fa ref_index # 执行比对过程 bowtie2 -x ref_index -U input.fastq -S output.sam # Bam 文件排序加索引 samtools view -bS output.sam | samtools sort -o sorted.bam - samtools index sorted.bam # Peak calling with MACS2 macs2 callpeak -t treated_samples.bed -c control_sample.bed \ -f BED -g hs -n experiment_name # Venn Diagram generation using R package 'VennDiagram' library(VennDiagram) draw.pairwise.venn(area1=length(setA), area2=length(setB), cross.area=length(intersect(setA,setB))) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值