协方差矩阵/协方差矩阵的意义
基本的统计学概念,即均值、标准差、方差和协方差
协方差的定义
对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧。
记住,X、Y是一个列向量,它表示了每种情况下每个样本可能出现的数。比如给定则X表示x轴可能出现的数,Y表示y轴可能出现的。
用中文来描述,就是:协方差(i,j)=(第i列的所有元素-第i列的均值)*(第j列的所有元素-第j列的均值).
协方差矩阵本身的含义,即随机变量之间的线性相关关系(当然,相关系数矩阵在此处更为贴切),也利用了协方差矩阵为半正定矩阵的性质。
矩阵
矩阵其实就是一种将某个向量变换为另一个的方法,另外我们也可以将矩阵看作作用于所有数据并朝向某个方向的力。同时我们还知道了变量间的相关性可以由方差和协方差表达,并且我们希望保留最大方差以实现最优的降维。因此我们希望能将方差和协方差统一表示,并且两者均可以表示为内积的形式,而内积又与矩阵乘法密切相关。因此我们可以采用矩阵乘法的形式表示。若输入矩阵 X 有两个特征 a 和 b,且共有 m 个样本,那么有:
如果我们用 X 左乘 X 的转置,那么就可以得出协方差矩阵:
这个矩阵对角线上的两个元素分别是两特征的方差,而其它元素是 a 和 b 的协方差。两者被统一到了一个矩阵的,因此我们可以利用协方差矩阵描述数据点之间的方差和协方差,即经验性地描述我们观察到的数据。
寻找协方差矩阵的特征向量和特征值就等价于拟合一条能保留最大方差的直线或主成分。因为特征向量追踪到了主成分的方向,而最大方差和协方差的轴线表明了数据最容易改变的方向。根据上述推导,我们发现达到优化目标就等价于将协方差矩阵对角化:即除对角线外的其它元素化为 0,并且在对角线上将特征值按大小从上到下排列。协方差矩阵作为实对称矩阵,其主要性质之一就是可以正交对角化,因此就一定可以分解为特征向量和特征值。
当协方差矩阵分解为特征向量和特征值之后,特征向量表