运动控制——robotics toolbox配置

一、简介

Matlab_Robotic_Toolbox是一个功能强大的机器人工具箱,包含了机器人正、逆向运动学,正、逆向动力学,轨迹规划等等,其中的可视化仿真可使抽象的机器人学变得相对直观。

二、配置

此处安装robotics toolbox 10.3

下载链接:http://petercorke.com/wordpress/toolboxes/robotics-toolbox

CSDN下载:https://download.csdn.net/download/kalenee/10974685

(1)将下载的压缩包解压,然后移动到.\MATLAB\R2017b\toolbox目录下

(2)打开Matlab,选择设置路径,选择添加并包含子文件夹,然后选中rvctools文件夹,保存并退出。

三、测试

在命令行窗口输入以下命令:

startup_rvc

显示如下内容则配置完成

Robotics, Vision & Control: (c) Peter Corke 1992-2017 http://www.petercorke.com
- Robotics Toolbox for MATLAB (release 10.3)
 - ARTE contributed code: 3D models for robot manipulators (.\MATLAB\R2017b\toolbox\rvctools\robot\data\ARTE)
 - pHRIWARE (release 1.1): pHRIWARE is Copyrighted by Bryan Moutrie (2013-2018) (c)

 注意,该命令需置于程序开头,在调用工具箱前都需要运行该命令。

四、python版本

robopy

依赖:

安装:

pip install robopy

一种人工职能的机械臂的实物report。The intelligent classification robotic arm is an automated system that can automatically capture and classify objects. It uses PC as control system to realize automatic recognition and classification of objects through deep learning. It has real-time synchronization, controllability and intelligence. CNN Intelligent robotic arms are high-tech automated production equipment that can be programmed to perform a variety of expected tasks. The goal of this technology is to be applied in the machinery industry, which includes simple, repetitive or harsh conditions. Using intelligent arms to replace human labor improves work efficiency, which is why they have been widely used in various fields. In this project, the design of an intelligent classification robotic arm based on STM32 microcontroller is introduced. We combine the robotic arm with an image classification algorithm based on deep learning. On the PC end, we use the Convolutional Neural Network (CNN) to classify images and control the arm by coordinating STM32 microcontroller with the PC to achieve the objectives. In this design, we use a camera to capture the object, and realize image classification using the trained convolutional neural network. The PC then sends commands to the robot arm through serial communication, which completes item transfer. In this paper, we first introduce the various hardware and algorithms applied in the system in detail, and propose specific implementation schemes. Next, we show the test results for the entire project and analyze the test results to arrive at some of the causes of the errors. The design can be applied to industrial environments to complete different classification problems, reduce human burden, and improve classification accuracy and efficiency. With adjustments, this project will hold a wide application prospect for the development of intelligent societies in the future.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值