调用tidyplots的R包,可以使用科研绘图变得非常容易,不需要掌握复杂的编程技巧和代码,即可完成高质量的出图。
tidyplots绘图函数文档: ttps://jbengler.github.io/tidyplots/reference/
tidyplots绘图示例文档: https://jbengler.github.io/tidyplots/articles/Visualizing-data.html
1. tidyplots安装
# 安装tidyverse和tidyplots
install.packages("tidyverse")
install.packages("tidyplots")
# 导入包
library(tidyplots)
# 查看自带study数据集
# 该表有7列(也称为变量)和20行(也称为观测),研究参与者接受4种不同的treatment(A、B、C或# D),测量score以评估治疗效果
study
#> treatment group dose participant age sex score
#> 1 A placebo high p01 23 female 2
#> 2 A placebo high p02 45 male 4
#> 3 A placebo high p03 32 female 5
#> 4 A placebo high p04 37 male 4
#> 5 A placebo high p05 24 female 6
#> 6 B placebo low p06 23 female 9
#> 7 B placebo low p07 45 male 8
#> 8 B placebo low p08 32 female 12
#> 9 B placebo low p09 37 male 15
#> 10 B placebo low p10 24 female 16
#> 11 C treatment high p01 23 female 32
#> 12 C treatment high p02 45 male 35
#> 13 C treatment high p03 32 female 24
#> 14 C treatment high p04 37 male 45
#> 15 C treatment high p05 24 female 56
#> 16 D treatment low p06 23 female 23
#> 17 D treatment low p07 45 male 25
#> 18 D treatment low p08 32 female 21
#> 19 D treatment low p09 37 male 22
#> 20 D treatment low p10 24 female 23
2. 带数据标签的柱状图
# %>%使用快捷键ctel+shift+M即可打出
study %>%
tidyplot(x = treatment, y = score) %>%
# 添加平均值的柱子
add_mean_bar() %>%
# 添加数据标签
add_mean_value()
3. 多组带显著性p-value的箱线图
# 使用自带数据集study绘图
study %>%
tidyplot(x = treatment, y = score, color = treatment) %>%
add_boxplot() %>%
# 将A组作为对照,添加p-value
add_test_pvalue(ref.group = 'A')
4. 分组带显著性标识的箱线图
gene_expression %>%
# 使用dplyr包提取"Apol6", "Col5a3", "Vgf", "Bsn"四个样本类型
dplyr::filter(external_gene_name %in% c("Apol6", "Col5a3", "Vgf", "Bsn")) %>%
tidyplot(x = condition, y = expression, color = sample_type) %>%
add_mean_dash() %>%
add_sem_errorbar() %>%
add_data_points_beeswarm() %>%
add_test_asterisks(hide_info = TRUE) %>%
remove_x_axis_title() %>%
split_plot(by = external_gene_name)
5. 多组带误差线的柱状图
study %>%
tidyplot(x = treatment, y = score, color = treatment) %>%
add_mean_bar(alpha = 0.4) %>%
add_sem_errorbar() %>%
add_data_points_beeswarm() %>%
# 默认颜色主题
view_plot(title = "Default color scheme: 'friendly'") %>%
adjust_colors(colors_discrete_apple) %>%
# 可选的颜色主题
view_plot(title = "Alternative color scheme: 'apple'")
6. 堆积柱状图
energy %>%
tidyplot(x = year, y = power, color = energy_source) %>%
# 绝对的堆积高度
add_barstack_absolute()
energy %>%
tidyplot(x = year, y = power, color = energy_type) %>%
# 相对的堆积高度
add_barstack_relative()
7. 分组的饼图
energy %>%
dplyr::filter(year %in% c(2005, 2010, 2015, 2020)) %>%
tidyplot(y = power, color = energy_source) %>%
add_donut() %>%
# 按年份分组展示
split_plot(by = year)
8. 热图
gene_expression %>%
tidyplot(x = sample, y = external_gene_name, color = expression) %>%
add_heatmap() %>%
adjust_size(height = 100)
## 生信软件文章推荐
生信软件1 - 测序下机文件比对结果可视化工具 visNano
生信软件3 - mapping比对bam文件质量评估工具 qualimap
生信软件4 - 拷贝数变异CNV分析软件 WisecondorX
生信软件7 - 多线程并行运行Linux效率工具Parallel
生信软件8 - bedtools进行窗口划分、窗口GC含量、窗口测序深度和窗口SNP统计
生信软件9 - 多公共数据库数据下载软件Kingfisher
生信软件10 - DNA/RNA/蛋白多序列比对图R包ggmsa
生信软件11 - 基于ACMG的CNV注释工具ClassifyCNV
生信软件12 - 基于Symbol和ENTREZID查询基因注释的R包(easyConvert )
生信软件13 - 基于sambamba 窗口reads计数和平均覆盖度统计
生信软件14 - bcftools提取和注释VCF文件关键信息
生信软件15 - 生信NGS数据分析强大的工具集ngs-bits
生信软件17 - 基于fasta文件的捕获探针设计工具catch
生信软件18 - 基于docker部署Web版 Visual Studio Code
生信软件20 - seqkit+awk+sed+grep高级用法技巧合辑
生信软件21 - 多线程拆分NCBI-SRA文件工具pfastq-dump
生信软件22 - 测序数据5‘和3‘端reads修剪工具sickle
生信软件23 - Samtools和GATK去除PCR重复方法汇总
生信软件24 - 查询物种分类学信息和下载基因组TaxonKit和ncbi-genome-download
生信软件26 - BWA-MEM比对算法性能更好的bwa-mem2
生信软件27 - 基于python的基因注释数据查询/检索库mygene
生信软件28 - fastq与bam的reads数量计算与双端fastq配对检测工具fastq-pair
生信软件29 - 三代数据高效映射精确的长读段比对工具mapquik
生信软件31 - Bcftools操作VCF/BCF文件高级用法合集
生信软件33 - Wgsim生成双端(PE) fastq模拟数据
生信软件34 - 大幅提升Python程序执行效率的工具Pypy
生信软件36 - SAM/BAM/CRAM文件插入SNV/INDEL/SV工具Bamsurgeon
生信软件37 - 基于测序reads变异进行单倍型分型工具WhatsHap