生信软件42 - 科研绘图R包神器tidyplots

调用tidyplots的R包,可以使用科研绘图变得非常容易,不需要掌握复杂的编程技巧和代码,即可完成高质量的出图。

tidyplots绘图函数文档: ttps://jbengler.github.io/tidyplots/reference/

tidyplots绘图示例文档: https://jbengler.github.io/tidyplots/articles/Visualizing-data.html

1. tidyplots安装


# 安装tidyverse和tidyplots
install.packages("tidyverse")
install.packages("tidyplots")

# 导入包
library(tidyplots)

# 查看自带study数据集
# 该表有7列(也称为变量)和20行(也称为观测),研究参与者接受4种不同的treatment(A、B、C或# D),测量score以评估治疗效果
study
#>    treatment     group dose participant age    sex score
#> 1          A   placebo high         p01  23 female     2
#> 2          A   placebo high         p02  45   male     4
#> 3          A   placebo high         p03  32 female     5
#> 4          A   placebo high         p04  37   male     4
#> 5          A   placebo high         p05  24 female     6
#> 6          B   placebo  low         p06  23 female     9
#> 7          B   placebo  low         p07  45   male     8
#> 8          B   placebo  low         p08  32 female    12
#> 9          B   placebo  low         p09  37   male    15
#> 10         B   placebo  low         p10  24 female    16
#> 11         C treatment high         p01  23 female    32
#> 12         C treatment high         p02  45   male    35
#> 13         C treatment high         p03  32 female    24
#> 14         C treatment high         p04  37   male    45
#> 15         C treatment high         p05  24 female    56
#> 16         D treatment  low         p06  23 female    23
#> 17         D treatment  low         p07  45   male    25
#> 18         D treatment  low         p08  32 female    21
#> 19         D treatment  low         p09  37   male    22
#> 20         D treatment  low         p10  24 female    23

2. 带数据标签的柱状图

# %>%使用快捷键ctel+shift+M即可打出
study %>% 
  tidyplot(x = treatment, y = score) %>% 
  # 添加平均值的柱子
  add_mean_bar() %>%
  # 添加数据标签 
  add_mean_value()

![[unnamed-chunk-24-1.png]]

3. 多组带显著性p-value的箱线图

# 使用自带数据集study绘图
study %>% 
  tidyplot(x = treatment, y = score, color = treatment) %>% 
  add_boxplot() %>% 
  # 将A组作为对照,添加p-value
  add_test_pvalue(ref.group = 'A')
  

在这里插入图片描述

4. 分组带显著性标识的箱线图

gene_expression %>% 
  # 使用dplyr包提取"Apol6", "Col5a3", "Vgf", "Bsn"四个样本类型
  dplyr::filter(external_gene_name %in% c("Apol6", "Col5a3", "Vgf", "Bsn")) %>% 
  tidyplot(x = condition, y = expression, color = sample_type) %>% 
  add_mean_dash() %>% 
  add_sem_errorbar() %>% 
  add_data_points_beeswarm() %>% 
  add_test_asterisks(hide_info = TRUE) %>% 
  remove_x_axis_title() %>% 
  split_plot(by = external_gene_name)
  

![[README-unnamed-chunk-11-1.png]]

5. 多组带误差线的柱状图

study %>% 
  tidyplot(x = treatment, y = score, color = treatment) %>% 
  add_mean_bar(alpha = 0.4) %>% 
  add_sem_errorbar() %>% 
  add_data_points_beeswarm() %>% 
  # 默认颜色主题
  view_plot(title = "Default color scheme: 'friendly'") %>% 
  adjust_colors(colors_discrete_apple) %>% 
  # 可选的颜色主题
  view_plot(title = "Alternative color scheme: 'apple'")

在这里插入图片描述
在这里插入图片描述

6. 堆积柱状图

energy %>% 
  tidyplot(x = year, y = power, color = energy_source) %>% 
  # 绝对的堆积高度
  add_barstack_absolute()

db9d5ea8.png)

energy %>% 
  tidyplot(x = year, y = power, color = energy_type) %>% 
  # 相对的堆积高度
  add_barstack_relative()

![[unnamed-chunk-40-1.png]]

7. 分组的饼图

energy %>% 
  dplyr::filter(year %in% c(2005, 2010, 2015, 2020)) %>% 
  tidyplot(y = power, color = energy_source) %>% 
  add_donut() %>% 
  # 按年份分组展示
  split_plot(by = year)
  

![[饼图]]

8. 热图

gene_expression %>% 
  tidyplot(x = sample, y = external_gene_name, color = expression) %>% 
  add_heatmap() %>%
  adjust_size(height = 100)

在这里插入图片描述## 生信软件文章推荐

生信软件1 - 测序下机文件比对结果可视化工具 visNano

生信软件2 - 下游比对数据的统计工具 picard

生信软件3 - mapping比对bam文件质量评估工具 qualimap

生信软件4 - 拷贝数变异CNV分析软件 WisecondorX

生信软件5 - RIdeogram包绘制染色体密度图

生信软件6 - bcftools查找指定区域的变异位点信息

生信软件7 - 多线程并行运行Linux效率工具Parallel

生信软件8 - bedtools进行窗口划分、窗口GC含量、窗口测序深度和窗口SNP统计

生信软件9 - 多公共数据库数据下载软件Kingfisher

生信软件10 - DNA/RNA/蛋白多序列比对图R包ggmsa

生信软件11 - 基于ACMG的CNV注释工具ClassifyCNV

生信软件12 - 基于Symbol和ENTREZID查询基因注释的R包(easyConvert )

生信软件13 - 基于sambamba 窗口reads计数和平均覆盖度统计

生信软件14 - bcftools提取和注释VCF文件关键信息

生信软件15 - 生信NGS数据分析强大的工具集ngs-bits

生信软件16 - 常规探针设计软件mrbait

生信软件17 - 基于fasta文件的捕获探针设计工具catch

生信软件18 - 基于docker部署Web版 Visual Studio Code

生信软件19 - vcftools高级用法技巧合辑

生信软件20 - seqkit+awk+sed+grep高级用法技巧合辑

生信软件21 - 多线程拆分NCBI-SRA文件工具pfastq-dump

生信软件22 - 测序数据5‘和3‘端reads修剪工具sickle

生信软件23 - Samtools和GATK去除PCR重复方法汇总

生信软件24 - 查询物种分类学信息和下载基因组TaxonKit和ncbi-genome-download

生信软件25 - 三代测序数据灵敏比对工具ngmlr

生信软件26 - BWA-MEM比对算法性能更好的bwa-mem2

生信软件27 - 基于python的基因注释数据查询/检索库mygene

生信软件28 - fastq与bam的reads数量计算与双端fastq配对检测工具fastq-pair

生信软件29 - 三代数据高效映射精确的长读段比对工具mapquik

生信软件30 - 快速单倍型分析工具merlin

生信软件31 - Bcftools操作VCF/BCF文件高级用法合集

生信软件32 - 变异位点危害性评估预测工具合集

生信软件33 - Wgsim生成双端(PE) fastq模拟数据

生信软件34 - 大幅提升Python程序执行效率的工具Pypy

生信软件35 - AI代码编辑器Cursor

生信软件36 - SAM/BAM/CRAM文件插入SNV/INDEL/SV工具Bamsurgeon

生信软件37 - 基于测序reads变异进行单倍型分型工具WhatsHap

生信软件38 - 基因型填充软件IMPUTE2

生信软件39 - GATK最佳实践流程重构,提高17倍分析速度的LUSH流程

生信软件40 - bedtools经典使用方法合集

生信软件41 - GATK经典使用方法合集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信与基因组学

每一份鼓励是我坚持下去动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值