【智能算法应用】海洋捕食者算法求解二维栅格路径规划问题


1.算法原理

【智能算法】海洋捕食者算法(MPA)原理及实现

2.二维路径规划数学模型

栅格法模型最早由 W.E. Howden 于 1968 年提出,障碍物的栅格用黑色表示,可通过的自由栅格用白色表示。
在这里插入图片描述
求解二维路径规划问题时,一般采用八领域搜索。
在这里插入图片描述
优化目标

路径规划问题需要考虑三点:

  • 全局总路径最优
  • 避免碰撞到障碍物
  • 路径平滑性

全局总路径最优

考虑路径规划问题的全局最优路径长度最短,适应度函数可以定义为:
F 1 = ∑ i = 0 m − 1 ( x i + 1 − x i ) 2 + ( y i + 1 − y i ) 2 (1) F_1 = \sum_{i = 0}^{m-1}\sqrt{\left( x_{i+1} - x_i \right)^2 + \left( y_{i+1} - y_i \right)^2}\tag{1} F1=i=0m1(xi+1xi)2+(yi+1yi)2 (1)

避免碰撞到障碍物

通常考虑添加惩罚函数,当下一步路径将与障碍物发生碰撞时,对其进行惩罚:
F 2 = ϕ ⋅ Q (2) F_2=\phi\cdot Q\tag{2} F2=ϕQ(2)

路径平滑性

通常采用方法包括B样条曲线、贝塞尔曲线、最小路径曲率等。

3.结果展示

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] 梁景润,刘丽桑,陈炯晖,等.多策略优化麻雀搜索算法及其路径规划的应用[J].福建理工大学学报,2023,21(06):605-612.
[2] 邓明杰.面向路径规划的群智能优化算法研究[D].江西理工大学,2023.
[3] 张恩浩.基于麻雀搜索算法的移动机器人路径规划算法研究[D].重庆理工大学,2022.

5.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值