瞪羚优化算法:一种新型自然启发式优化算法


在这里插入图片描述

1.摘要

瞪羚优化算法(GOA)是一种新型的基于种群的元启发式算法,灵感来源于瞪羚在以捕食者为主的环境中的生存策略。该算法通过模拟瞪羚逃离捕食者的行为,解决复杂的优化问题。GOA包含两个主要阶段:开发阶段和探索阶段。在开发阶段,模拟瞪羚在安全环境中觅食的行为;在探索阶段,则模拟瞪羚发现捕食者后的逃跑和躲避行为。

2.算法原理

开发阶段

在这里插入图片描述

假设瞪羚在没有捕食者或捕食者潜伏的情况下安静地觅食,GOA模拟瞪羚通过均匀和受控的步伐在优化领域的邻域区域进行搜索:
g a z e l l e i + 1 = g a z e l l e i + s . R ∗ . R B ∗ . ( E l i t e i − R B ∗ . g a z e l l e i ) \begin{array}{c}\mathrm{gazelle}_{i+1}=\mathrm{gazelle}_i+s.R*.R_B*.(\mathrm{Elite}_i-R_B*.\mathrm{gazelle}_i)\end{array} gazellei+1=gazellei+s.R.RB.(EliteiRB.gazellei)
其中,s表示瞪羚的觅食速度,RB表示布朗运动包含随机数矢量,R为[0,1]随机数。

探索阶段

在这里插入图片描述

瞪羚在发现捕食者后立即奔跑,根据迭代次数的奇偶性,瞪羚的移动方向会相应改变。研究中假定瞪羚首先使用Levy飞行进行反应,而捕食者则先使用布朗运动开始追逐,随后转为Levy飞行:
g a z e l l e i + 1 → = gazelle i → + S . μ . R ⃗ ∗ . R ⃗ L ∗ . ( E l i t e i → − R L → ∗ . g a z e l l e i → ) \begin{aligned} \overrightarrow{\mathrm{gazelle}_{i+1}}& =\overrightarrow{\text{gazelle}_i}+S.\mu.\vec{R}*.\vec{R}_L \\ &*.\left(\overrightarrow{\mathrm{Elite}_{i}}-\overrightarrow{R_{L}} *.\overrightarrow{\mathrm{gazelle}_{i}}\right) \end{aligned} gazellei+1 =gazellei +S.μ.R .R L.(Elitei RL .gazellei )
其中,S为瞪羚最高速度,捕食者追逐瞪羚行为:
g a z e l l e i + 1 → = g a z e l l e i → + S ⋅ μ ⋅ C F ∗ ⋅ R ⃗ B ∗ ⋅ ( E l i t e i → − R L → ∗ ⋅ g a z e l l e i → ) \begin{aligned}\overrightarrow{\mathrm{gazelle}_{i+1}}&=\overrightarrow{\mathrm{gazelle}_i}+S\cdot\mu\cdot\mathrm{CF}*\cdot\vec{R}_B\\&*\cdot\left(\overrightarrow{\mathrm{Elite}_i}-\overrightarrow{R_L}*\cdot\overrightarrow{\mathrm{gazelle}_i}\right)\end{aligned} gazellei+1 =gazellei +SμCFR B(Elitei RL gazellei )

PSRs是捕食者成功率,这一效应影响瞪羚的逃逸能力:
g a z e l l e i + 1 → = { g a z e l l e i → + C F [ L B → + R ⃗ ∗ . ( U B → − L B → ) ] ∗ ⋅ U ⃗ if r ≤ PSRs g a z e l l e i → + [ P S R s ( 1 − r ) + r ] ( g a z e l l r 1 → − g a z e l l e r 2 → ) else \begin{aligned}&\overrightarrow{\mathrm{gazelle}_{i+1}}\\&=\begin{cases}\overrightarrow{\mathrm{gazelle}_i}+\mathrm{CF}\Big[\overrightarrow{\mathrm{LB}}+\vec{R}*.\Big(\overrightarrow{\mathrm{UB}}-\overrightarrow{\mathrm{LB}}\Big)\Big]*\cdot\vec{U}&\text{if}r\leq\text{PSRs}\\\overrightarrow{\mathrm{gazelle}_i}+[\mathrm{PSRs}(1-r)+r]\Big(\overrightarrow{\mathrm{gazell}_{r_1}}-\overrightarrow{\mathrm{gazelle}_{r_2}}\Big)&\text{else}\end{cases}\end{aligned} gazellei+1 = gazellei +CF[LB +R .(UB LB )]U gazellei +[PSRs(1r)+r](gazellr1 gazeller2 )ifrPSRselse

流程图

在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Agushaka J O, Ezugwu A E, Abualigah L. Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer[J]. Neural Computing and Applications, 2023, 35(5): 4099-4131.

5.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值