【优化算法】莲花效应优化算法(LEA):一种基于莲花自然启发的工程设计优化算法


在这里插入图片描述

1.摘要

本文提出了一种新的进化算法——莲花效应算法(LEA),该算法结合了蜻蜓算法中的高效操作算子,例如蜻蜓在花朵授粉中的运动方式用于探索,以及水在花叶上的自清洁特性——即莲花效应,用于提取和局部搜索操作。

在这里插入图片描述

2.算法原理

探索阶段

在LEA算法中,蜻蜓模拟了授粉过程,其基于昆虫群体的三个基本行为原则——分离、对齐和凝聚,以及食物和敌人两个概念,来模拟蜻蜓的智能行为。分离原则旨在避免个体与邻近个体发生碰撞;对齐原则则要求个体与邻域内其他个体的速度相匹配;凝聚原则则促使个体向邻域的质量中心聚集。每个群体的最终目标是生存,因此个体必须朝向食物源并远离敌人。分离行为:
S i t = − ∑ j = 1 N X i t − X j t S_i^t=-\sum_{j=1}^NX_i^t-X_j^t Sit=j=1NXitXjt
对齐行为:
A i t = ∑ j = 1 N X j t N A_i^t=\frac{\sum_{j=1}^NX_j^t}{N} Ait=Nj=1NXjt
凝聚行为:
C i t = ∑ j = 1 N X j t N − X i t C_i^t=\frac{\sum_{j=1}^NX_j^t}{N}-X_i^t Cit=Nj=1NXjtXit

对食物来源的吸引力计算如下:
F i t = X + t − X i t F_i^t=X_+^t-X_i^t Fit=X+tXit
天敌干扰力计算如下:
E i t = X − t + X i t E_{i}^{t}=X_{-}^{t}+X_{i}^{t} Eit=Xt+Xit
其中, X + t X_+^t X+t食物来源的位置, X − t X_{-}^{t} Xt天敌位置。

蜻蜓的行为是由五种假设模式的组合而成。为了更新蜻蜓在搜索空间中的位置并模拟它们的运动,算法考虑了步长和位置:
Δ X i t + 1 = ( s S i t + a A i t + c C i t + f F i t + e E i t ) + w Δ X i t \Delta X_i^{t+1}= \begin{pmatrix} sS_i^t+aA_i^t+cC_i^t+fF_i^t+eE_i^t \end{pmatrix}+w\Delta X_i^t ΔXit+1=(sSit+aAit+cCit+fFit+eEit)+wΔXit
位置更新:
X i t + 1 = X i t + w Δ X i t + 1 X_i^{t+1}=X_i^t+w\Delta X_i^{t+1} Xit+1=Xit+wΔXit+1

为了提高蜻蜓在搜索空间中的随机探索行为,当周围没有解时,蜻蜓会随机飞行并调整其步长:
X i t + 1 = X i t + L e v y ( d ) × X i t X_i^{t+1}=X_i^t+\mathrm{Levy}(d)\times X_i^t Xit+1=Xit+Levy(d)×Xit

开发阶段

局部授粉阶段是该算法中的提取过程,在这一过程中使用一个系数来确定每朵花周围的生长区域大小,最佳解成为其他解的吸引源,其他解则朝着最佳解移动。在算法的初始阶段,步长较长,以便快速探索解空间;随着优化的进行,步长逐渐缩短,从而精细化搜索并增强局部优化能力:
X i t + 1 = X i t + R ( X i t − g ∗ ) X_{i}^{t+1}=X_{i}^{t}+R\left(X_{i}^{t}-g^{*}\right) Xit+1=Xit+R(Xitg)
其中, R R R表示增长区域:
R = 2 e − ( 4 t L ) 2 R=2e^{-\left(\frac{4t}{L}\right)^2} R=2e(L4t)2

伪代码

在这里插入图片描述

3.结果展示

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Dalirinia E, Jalali M, Yaghoobi M, et al. Lotus effect optimization algorithm (LEA): a lotus nature-inspired algorithm for engineering design optimization[J]. The Journal of Supercomputing, 2024, 80(1): 761-799.

5.代码获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值