2024年数学SCI1区TOP:改进海洋捕食者算法MMPA用于UAV路径规划,深度解析+性能实测


在这里插入图片描述

1.摘要

本文提出了一种改进海洋捕食者算法(MMPA),用于解决具有多重威胁的复杂环境中的全局优化问题,针对无人机(UAV)路径规划问题。为克服原始MPA算法的不足,本文引入了四种创新策略:自适应参数控制、非线性惯性权重、基于柯西变异算子以及改进差分变异策略。这些策略显著提高了算法的收敛速度,并在保证精度的同时,增强了MPA的整体性能。

2.海洋捕食者算法MPA原理

【智能算法】海洋捕食者算法(MPA)原理及实现

3.改进策略

自适应参数控制策略

MPA算法通过模拟捕食者和猎物的运动,借鉴了自然界中的行为模式,用于平衡探索与开发。尽管它在这两者之间取得了一定的平衡,MPA仍然面临一些问题,如在局部最优解处停滞,并未能达到全局最优解。MMPA算法采用了一种线性变化的自适应参数,用以调节捕食者的运动步长,从而增强算法的优化能力:
C F n e w = 2 × l t e r M a x I t e r CF_{\mathrm{new}}=2\times\frac{lter}{Max_{Iter}} CFnew=2×MaxIterlter

非线性惯性权重

为了有效平衡算法的探索与开发能力,论文通过自适应参数控制引入了一种非线性惯性权重策略:
w = α × e ( − ( α × l t e r M a x I t e r ) α ) w=\alpha\times\mathrm{e}^{\left(-\left(\alpha\times\frac{lter}{Max_{Iter}}\right)^\alpha\right)} w=α×e((α×MaxIterlter)α)
其中, α = 3 \alpha=3 α=3表示比例步长控制参数。

柯西变异算子

物种进化通常伴随着遗传变异的出现,为了更好地模拟这一进化现象,我们引入了基于柯西分布的柯西变异策略。柯西分布的特点使其能够生成远离中心的随机数,从而增强个体逃离局部极值的能力。
R → n e w = 1 + tan ⁡ ( 0.5 × π × ( r a n d − 0.5 ) ) \overrightarrow{R}_{new}=1+\tan(0.5\times\pi\times(rand-0.5)) R new=1+tan(0.5×π×(rand0.5))

结合Levy飞行和差分变异策略

在MPA算法的初始阶段,算法面临全局搜索与局部开发之间的平衡问题,导致收敛速度较慢。论文引入了差分进化DE/best/2和Levy飞行,提出了一种新的初始阶段更新规则:
s t e p s i z e i → = R L → ⊗ ( P r e y r 1 → − P r e y r 2 → ) + R L → ⊗ ( P r e y r 3 → − P r e y r 4 → ) \overrightarrow{\mathrm{stepsiz}e_i}=\overrightarrow{R_L}\otimes\left(\overrightarrow{Prey_{r1}}-\overrightarrow{Prey_{r2}}\right)+\overrightarrow{R_L}\otimes\left(\overrightarrow{Prey_{r3}}-\overrightarrow{Prey_{r4}}\right) stepsizei =RL (Preyr1 Preyr2 )+RL (Preyr3 Preyr4 )

伪代码

4.结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

UAV路径规划

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.参考文献

[1] Lyu L, Yang F. MMPA: A modified marine predator algorithm for 3D UAV path planning in complex environments with multiple threats[J]. Expert Systems with Applications, 2024, 257: 124955.

6.获取代码

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值