【Apollo 6.0项目实战】Perception模块

本文介绍了在LGSVL仿真器中测试Apollo 6.0自动驾驶车辆的感知能力,涵盖视觉感知、激光雷达感知及多传感器融合。重点讨论了感知模块的结构、配置以及不同传感器的输入输出,包括3D Ground Truth sensor和Signal sensor在障碍物检测和交通灯检测中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述


前言

环境:

  • Ubuntu 20.04
  • Apollo 6.0
  • LGSVL仿真器

Apollo 6.0软件框架

在这里插入图片描述

  • Perception——感知模块识别自动驾驶汽车周围的环境。感知模块内部包含两个重要的子模块:障碍物检测和交通灯检测。
  • Prediction——预测模块用来预测与感知障碍物未来的运动轨迹。
  • Routing——路由模块告诉自动驾驶汽车通过全局路径到达目的地。
  • Planning——规划模块规划自动驾驶汽车要采取的时空轨迹。
  • Control——控制模块通过产生油门、刹车和转向等控制命令来执行计划的时空轨迹。
  • CanBus —— CanBus 是将控制命令传递给车辆硬件的接口。它还将机箱信息传递给软件系统。
  • HD-Map——该模块类似于库。
### 关于百度 Apollo 自动驾驶开源平台的技术信息 #### 百度 Apollo 的发展历程和技术定位 百度 Apollo 是一个开放的自动驾驶平台,发布于 2017 年 4 月 19 日。该平台旨在推动自动驾驶技术的发展和应用,在短短几年内取得了显著进展。截至 2024 年 1 月 2 日,百度旗下的自动驾驶出行服务平台萝卜快跑已经在全球范围内提供了超过 500 万次的服务,成为全球最大的自动驾驶出行服务提供商之一[^1]。 #### Apollo 平台的核心特点 Apollo 平台不仅是一个软件框架,更是一套完整的解决方案,涵盖了硬件、软件和服务等多个方面。为了帮助开发者更好地理解和使用这一平台,官方提供了一份详细的文档《HOW TO UNDERSTAND ARCHITECTURE AND WORKFLOW》,其中深入介绍了系统的架构和工作流程[^2]。 #### 主要功能模块介绍 Apollo 平台的主要组成部分包括但不限于以下几个方面: - **感知层**:通过激光雷达、摄像头等多种传感器获取周围环境的信息。 - **决策规划层**:基于收集到的数据制定合理的行驶路径并做出实时调整。 - **控制执行层**:负责车辆的具体操作指令下发给底层控制系统。 - **高精地图与定位系统**:利用厘米级精度的地图数据实现精准导航。 这些组件共同协作,使得无人驾驶汽车能够在复杂的城市环境中安全可靠地运行。 ```python # 示例代码展示如何初始化Apollo SDK(假设) from apollo_sdk import Perception, Planning, Control, Localization perception = Perception() planning = Planning(perception.get_environment_data()) control = Control(planning.generate_path()) localization = Localization() while True: current_position = localization.update_location() control.execute(current_position) ``` #### 生态建设与发展前景 除了技术创新外,Apollo 还积极构建了一个围绕自身的生态系统。在成都等地的成功实践表明,Apollo 正引领着新一轮智慧交通革命的到来,创造了更多可能性和发展机遇。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xiewf8128

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值