SLAM岗面经-2023

1、吉利研究院

一面:

  1. 最优化方法:梯度下降、高斯牛顿、lm方法比较

  2. orbslam2框架,BA作用

  3. orbslam3是否了解

  4. Covisilibilty Graph与Essential Graph ,共视图和本质图

  5. 项目、项目是否还能做改进(接下来就是我最难受的部分:c++八股)

  6. 堆和栈区别

  7. malloc new的区别

  8. static作用

  9. 空间分配

  10. STL vector list区别

  11. 重载和重写

  12. const 和 define区别

  13. 析构和构造函数

八股还是得好好背啊!!!!

不难但是八股不行,得背,估计无了。

c++新建三维数组:

使用Eigen包,Eigen:Vector

#include "Eigen/Core"
#include <iostream>

using std::cout;
using std::endl;

int main()
{
    Eigen::Matrix<double, 2, 2> m; # 创建double类型的2X2维矩阵
    m << 1, 2, 3, 4; # 为每个元素赋值

    Eigen::MatrixXf m1(2, 3); # 创建动态矩阵,并初始化为2X3矩阵,类型为float
    m1 << 1, 2, 3, 4, 5, 6;

    Eigen::Matrix3d m2 = Eigen::Matrix3d::Identity(); # 3维double类型的单位矩阵
    Eigen::Matrix3d m3 = Eigen::Matrix3d::Random(); # 3维double类型的随机矩阵

    Eigen::Vector3f v1 = Eigen::Vector3f::Zero(); # 3维float类型的零向量(默认为列向量,除非显式指定)
    Eigen::Vector3d v2(1.0, 2.0, 3.0); # 3维double类型的向量,并赋值

    Eigen::VectorXf v3(3); # 动态列向量,指定为3维
    v3 << 1.0, 2.0, 3.0;

    Eigen::RowVector2d rv1(1, 2); # 2维行向量,并赋值
    Eigen::RowVectorXd rv2(5); # 动态行向量,初始化为5维
    rv2 << 1, 2, 3, 4, 5;

    cout << m1(1, 1) << endl; # 输出指定位置的值
    cout << v1(1) << endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值