NVIDIA Isaac Sim 使用初体验

  • 版本信息:
    • 软件版本:4.2.0
    • 运行模式:GPU 加速模式
    • 安装方式:本地下载,通过 NVIDIA Omniverse Launcher 安装
  • 硬件与软件环境配置:
    • GPU: RTX4090,24G显存
    • CPU: AMD/EPYC2 (16 核 32 线程)
    • 内存: 32GB 
    • 存储: 100G
    • 操作系统: Windows 2022
    • CUDA: CUDA 12.1
    • 驱动版本: NVIDIA GPU Driver 537.58 Studio
    • 开发工具: Python 3.8.12
    • 仿真物理引擎: PhysX(支持 GPU 加速)

运行使用记录

1、环境准备

(1)硬件环境检查:

        a、配置 CUDA 环境,使用nvcc --version命令验证编译器版本,确保 CUDA 12.1 环境变量正确设置。

        b、使用nvidia-smi命令验证 RTX 4090 的状态,查看温度、功耗、显存使用情况正常。</

### NVIDIA Isaac Sim 机器人仿真开发平台使用教程 #### 下载与安装 NVIDIA Isaac Sim 是一个基于 Omniverse 的物理精确模拟环境,专为加速机器人的设计、测试和部署而构建[^2]。为了开始使用此工具,需先下载并安装软件。 访问[NVIDIA官网](https://developer.nvidia.com/isaac-sim),按照页面提示注册账号后可获取最新版本的 Isaac Sim 安装包。对于初次使用者来说,建议遵循官方文档中的指导完成设置流程[^3]。 #### 配置环境 成功安装之后,下一步就是配置工作空间以便能够顺利运行项目。这通常涉及到创建一个新的虚拟环境来管理依赖项以及确保所有必要的库都已正确加载。具体操作可以参照入门指南中关于如何准备开发环境的部分说明。 #### 导入自定义模型 当一切就绪时,就可以着手于将自己的 STL 文件转换成适合在 isaac sim使用的格式了。这一过程可以通过第三方建模软件实现,比如 Blender,在其中导出 USD (Universal Scene Description) 格式的文件再导入到 isaac sim 当中[^1]。 #### 编写控制逻辑 为了让车辆或其他类型的机器人动起来,则需要编写相应的程序代码去驱动它们的动作。这部分内容涉及到了ROS2框架的应用编程接口(APIs)。下面给出一段简单的 Python 脚本作为例子: ```python import rclpy from geometry_msgs.msg import Twist def main(args=None): rclpy.init(args=args) node = rclpy.create_node('move_robot') publisher = node.create_publisher(Twist, '/cmd_vel', 10) msg = Twist() while True: # 设置线速度和角速度 msg.linear.x = 0.5 msg.angular.z = 0 publisher.publish(msg) if __name__ == '__main__': main() ``` 这段脚本实现了让机器人向前移动的功能;实际应用中可能还需要加入更多复杂的运动规划算法以适应不同的任务需求。
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值