边际概率的信息矩阵(二)

与第一篇流程几乎完全一样,唯一的不同之处在于:将要被 marg 掉的变量位于信息矩阵的右下角!
【符号约定】
随机变量 X = [ X r T , X m T ] T \Chi=[\Chi^T_r,\Chi^T_m]^T X=[XrT,XmT]T
下标 m , r m,r m,r:分别表示margin, reserve;
Σ , Λ \Sigma,\Lambda Σ,Λ:分别表示协方差矩阵、信息矩阵;
p ( X ) = p ( X r , X m ) p(\Chi)=p(\Chi_r,\Chi_m) p(X)=p(Xr,Xm),表示联合概率;
p ( X r ) = ∫ p ( X r , X m ) d X m p(\Chi_r)=\int p(\Chi_r,\Chi_m)d\Chi_m p(Xr)=p(Xr,Xm)dXm,表示边际概率。

假设随机变量服从零均值高斯分布。


已知联合概率 p ( X ) = p ( X r , X m ) p(\Chi)=p(\Chi_r,\Chi_m) p(X)=p(Xr,Xm)对应的信息矩阵 Λ \Lambda Λ,求边际概率 p ( X r ) p(\Chi_r) p(Xr)对应的信息矩阵 Λ r ′ \Lambda'_r Λr

解:首先, Λ \Lambda Λ按变量的维数分块:
Λ = [ Λ r r Λ r m Λ m r Λ m m ] \Lambda=\begin{bmatrix} \Lambda_{rr} & \Lambda_{rm} \\ \Lambda_{mr} & \Lambda_{mm} \\ \end{bmatrix} Λ=[ΛrrΛmrΛrmΛmm]

我们知道把 p ( X ) p(\Chi) p(X)对应的信息矩阵求逆,将得到 p ( X ) p(\Chi) p(X)对应的协方差矩阵(反之亦然):
(1) Λ − 1 = [ Σ r r Σ r m Σ m r Σ m m ] = Σ \Lambda^{-1}=\begin{bmatrix} \Sigma_{rr} & \Sigma_{rm} \\ \Sigma_{mr} & \Sigma_{mm} \\ \end{bmatrix}=\Sigma \tag{1} Λ1=[ΣrrΣmrΣrmΣmm]=Σ(1)

式中, Σ r r \Sigma_{rr} Σrr即为边际概率 p ( X r ) p(\Chi_r) p(Xr)对应的协方差矩阵。【从高斯联合概率分布中,显然可得】

此时,我们把该 Σ r r \Sigma_{rr} Σrr求逆,将得到边际概率 p ( X r ) p(\Chi_r) p(Xr)对应的信息矩阵 Λ r ′ \Lambda'_r Λr,即为所求!
Λ r ′ = Σ r r − 1 \Lambda'_r=\Sigma^{-1}_{rr} Λr=Σrr1


不难发现使用这种思路,我们求了两次逆。下面使用一些技巧:
对于公式(1),做一些变形构造 Σ r r − 1 \Sigma^{-1}_{rr} Σrr1
(2) Λ = [ Λ r r Λ r m Λ m r Λ m m ] = [ Σ r r Σ r m Σ m r Σ m m ] − 1 \Lambda=\begin{bmatrix} \Lambda_{rr} & \Lambda_{rm} \\ \Lambda_{mr} & \Lambda_{mm} \\ \end{bmatrix} =\begin{bmatrix} \Sigma_{rr} & \Sigma_{rm} \\ \Sigma_{mr} & \Sigma_{mm} \\ \end{bmatrix}^{-1} \tag{2} Λ=[ΛrrΛmrΛrmΛmm]=[ΣrrΣmrΣrmΣmm]1(2)

开始变形之前,给出两个公式(可以展开验证一下),
第一个:
[ Σ r r Σ r m Σ m r Σ m m ] = [ I 0 Σ m r Σ r r − 1 I ] [ Σ r r 0 0 Σ m m − Σ m r Σ r r − 1 Σ r m ] [ I Σ r r − 1 Σ r m 0 I ] \begin{bmatrix} \Sigma_{rr} & \Sigma_{rm} \\ \Sigma_{mr} & \Sigma_{mm} \\ \end{bmatrix} = \begin{bmatrix} I & 0 \\ \Sigma_{mr} \Sigma^{-1}_{rr} & I \end{bmatrix} \begin{bmatrix} \Sigma_{rr} & 0 \\ 0 & \Sigma_{mm}-\Sigma_{mr}\Sigma^{-1}_{rr}\Sigma_{rm}\\ \end{bmatrix} \begin{bmatrix} I & \Sigma^{-1}_{rr}\Sigma_{rm} \\ 0 & I \end{bmatrix} [ΣrrΣmrΣrmΣmm]=[IΣmrΣrr10I][Σrr00ΣmmΣmrΣrr1Σrm][I0Σrr1ΣrmI]

我们定义 Δ Σ r r ≜ Σ m m − Σ m r Σ r r − 1 Σ r m \Delta_{\Sigma_{rr}} \triangleq \Sigma_{mm}-\Sigma_{mr}\Sigma^{-1}_{rr}\Sigma_{rm} ΔΣrrΣmmΣmrΣrr1Σrm Σ r r \Sigma_{rr} Σrr关于 Σ \Sigma Σ舒尔补
第二个(求上式的逆):
[ Σ r r Σ r m Σ m r Σ m m ] − 1 = [ I − Σ r r − 1 Σ r m 0 I ] [ Σ r r − 1 0 0 Δ Σ r r − 1 ] [ I 0 − Σ m r Σ r r − 1 I ] = [ Σ r r − 1 + Σ r r − 1 Σ r m Δ Σ r r − 1 Σ m r Σ r r − 1 − Σ r r − 1 Σ r m Δ Σ r r − 1 − Δ Σ r r − 1 Σ m r Σ r r − 1 Δ Σ r r − 1 ] \begin{aligned} \begin{bmatrix} \Sigma_{rr} & \Sigma_{rm} \\ \Sigma_{mr} & \Sigma_{mm} \\ \end{bmatrix}^{-1} &= \begin{bmatrix} I & -\Sigma^{-1}_{rr}\Sigma_{rm} \\ 0 & I \end{bmatrix} \begin{bmatrix} \Sigma_{rr}^{-1} & 0 \\ 0 & \Delta_{\Sigma_{rr}}^{-1} \\ \end{bmatrix} \begin{bmatrix} I & 0 \\ -\Sigma_{mr} \Sigma^{-1}_{rr} & I \end{bmatrix} \\ &= \begin{bmatrix} \Sigma_{rr}^{-1}+\Sigma_{rr}^{-1} \Sigma_{rm} \Delta_{\Sigma_{rr}}^{-1} \Sigma_{mr} \Sigma_{rr}^{-1} & -\Sigma_{rr}^{-1} \Sigma_{rm} \Delta_{\Sigma_{rr}}^{-1} \\ -\Delta_{\Sigma_{rr}}^{-1} \Sigma_{mr} \Sigma_{rr}^{-1} & \Delta_{\Sigma_{rr}}^{-1} \\ \end{bmatrix} \end{aligned} [ΣrrΣmrΣrmΣmm]1=[I0Σrr1ΣrmI][Σrr100ΔΣrr1][IΣmrΣrr10I]=[Σrr1+Σrr1ΣrmΔΣrr1ΣmrΣrr1ΔΣrr1ΣmrΣrr1Σrr1ΣrmΔΣrr1ΔΣrr1]

将上式展开,代入公式(2),得:
[ Λ r r Λ r m Λ m r Λ m m ] = [ Σ r r − 1 + Σ r r − 1 Σ r m Δ Σ r r − 1 Σ m r Σ r r − 1 − Σ r r − 1 Σ r m Δ Σ r r − 1 − Δ Σ r r − 1 Σ m r Σ r r − 1 Δ Σ r r − 1 ] \begin{aligned} \begin{bmatrix} \Lambda_{rr} & \Lambda_{rm} \\ \Lambda_{mr} & \Lambda_{mm} \\ \end{bmatrix} &=\begin{bmatrix} \Sigma_{rr}^{-1}+\Sigma_{rr}^{-1} \Sigma_{rm} \Delta_{\Sigma_{rr}}^{-1} \Sigma_{mr} \Sigma_{rr}^{-1} & -\Sigma_{rr}^{-1} \Sigma_{rm} \Delta_{\Sigma_{rr}}^{-1} \\ -\Delta_{\Sigma_{rr}}^{-1} \Sigma_{mr} \Sigma_{rr}^{-1} & \Delta_{\Sigma_{rr}}^{-1} \\ \end{bmatrix} \end{aligned} [ΛrrΛmrΛrmΛmm]=[Σrr1+Σrr1ΣrmΔΣrr1ΣmrΣrr1ΔΣrr1ΣmrΣrr1Σrr1ΣrmΔΣrr1ΔΣrr1]

对应元素相等,发现:
Σ r r − 1 = Λ r r − Λ r m Λ m m − 1 Λ m r \Sigma^{-1}_{rr}=\Lambda_{rr}-\Lambda_{rm}\Lambda_{mm}^{-1}\Lambda_{mr} Σrr1=ΛrrΛrmΛmm1Λmr

惊奇地发现,得到了相同的公式!!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值