【Halcon 算子】 laplace_of_gauss原理和使用

本文详细介绍了Halcon中的laplace_of_gauss算子,探讨了LOG算子的设计原理,包括高斯滤波器对噪声的抑制作用,以及在边缘检测中的应用。通过先进行高斯滤波再应用拉普拉斯算子,LOG算子能够在边缘处产生正负响应,便于通过过零检测找到边缘。文中还提供了调用格式和参数说明,并展示了代码演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一 提要

二、LoG的原理

2.1 算子设计原理

2.2 算子简化

2.3 算子推导

三、laplace_of_gauss算子

3.1 算子介绍

3.2 在边缘处的LOG响应具有如下的特点 

 四、代码演示


一 提要

        本节主要介绍边界提取的一种IoG算子,通过拉普拉斯-高斯滤波后,再由“过零”算子得到边界部分的分界线。

二、LoG的原理

2.1 算子设计原理

        拉普拉斯算子是一种高通滤波器,是影像灰度函数在两个垂直方向二阶偏导数之和。

        在离散数字影像的情况下,直接用影像灰度级的二阶差分代替连续情形下的二阶偏导数,对噪声很敏感,在提取边缘时往往会出现伪边缘响应。为克服拉普拉斯算子的不足,宜先对数字影像进行低通滤波,抑制噪声。

        因此,高斯拉普拉斯算子又称为LOG(Laplacian of Gaussian)算子,是首先用高斯函数作用图像,然后用拉普拉斯算子作用于图像的一个算子。

        二维的laplace算子形式如下:

                ​​​​​​​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值