一、说明
Deep Lake 是专门用于深度学习用例的数据湖(数据库),其中原始数据包括图像、视频、音频和其他非结构化数据。然后,原始数据被具体化为深度学习本机传感存储格式,并通过网络流式传输到模型训练。
二、深湖的意义
现在,为什么它有用?那么,这里有一些可以让我们的生活更轻松的方法:
-
为LLM应用程序存储数据和向量:
当我们使用LLM构建应用程序时,我们需要处理大量的数据和向量。Deep Lake就像一个特殊的存储空间,非常擅长处理这类信息。 -
管理训练模型的数据集:
当我们训练人工智能模型时,尤其是涉及深度学习的模型,我们需要有效地管理数据集。Deep Lake 帮助我们做到了这一点。它就像我们的助手,让一切井井有条。 -
让企业级 LLM 产品变得更轻松:
如果我们使用 LLM 开发大型产品,那么 Deep Lak