强化学习4——基于Actor-Critic的自适应PID控制器设计

注释:本博文内容来源于文献:Wang X, Cheng Y, Sun W, et al. A Proposal of Adaptive PID Controller Based on Reinforcement Learning[J]. Journal of China University of Mining and Technology, 2007, 17(1): 40-44.

一、问题背景

在国内外大量的强化学习研究中,大部分把系统的状态看作有限的集合,采用查表的形式存储和计算其值函数。但是在实际问题中,大多数系统的状态和动作都是大规模或者是连续的,表格无法表示这些状态和动作,存在状态和动作变量的空间复杂性问题,即所谓的“维数灾难”。针对强化学习的连续空间表示问题,目前常采用模糊逻辑和神经网络等方法对状态进行离散化或泛化。

由于神经网络具有任意逼近、容错等特点,因此,用神经网络来逼近强化学习的评价函数和值函数,既可以存储所学过的经验和信息,也可以对没有学到的状态进行推广。执行器-评价器(AC:Actor-Critic)学习算法是一种重要的强化学习算法186],它提供一种试图同时找到最优动作和最优期望的方式,在人工智能和智能控制等领域得到广泛应用。

 

二、基本Actor-Critic学习模型

                                             

                                                                      图1 执行器一评价器学习模型
 

二、控制器结构框图

                              

                                                                      图1 基于强化学习的自适应PID控制器设计

整个控制系统包括两大部分:传统增量式PID、基于Actor-Critic的参数优化。两部分的功能如下:

传统增量式PID控制器:

                                 (1)

由(1)可知,增量式PID控制器中关键参数为KI、KP、KD。因此如何调节这三个参数至关重要。

基于Actor-Critic的参数优化:利用强化学习的“试错”机制,经过不断尝试可以获得最优的一组控制参数,这里采用的智能体为Actor-Critic型的智能体。

二、关键技术

2.1 Actor-Critic型智能体

                                                          

                                                                         图2  Actor-Critic学习模型

                              

整个智能体包括两部分:Actor和Critic,其中Actor用于更新策略函数,而Critic更新价值函数(利用TD法)。

Barto和Sutton提出的Actor-Critic学习算法,亦称自适应启发评价算法(adaptive heuristic critic,AHC),它提供了一种试图同时找到最优动作期望值的方式。典型地,Actor-Critic学习模型主要由两个部分组成:动作评价网络(action evaluation network,AEN)或称Critic,和动作选择网络(action selection network,ASN)或称Actor。

图2给出了Actor-Critic学习模型的体系结构。由状态向量和环境提供的外部强化信号(立即回报)作为评判网络的输入,值函数的估计为输出,对动作网络的输出动作进行评价。Actor-Critic学习算法同时对值函数和策略进行估计,其中Actor用于进行策略估计,而Critic用于值函数估计。评价器产生的标量信号TD误差(内部强化信号)用于驱动评价器和行动器的所有学习,即Actor与Critic均采用TD法来学习策略函数和值函数。

 

2.2 RBF神经网络

                                                  

                                                                                   图2 RBF神经网络结构

应用RBF神经网络的原因:

(1)传统的Actor-Critic型智能体在更新迭代过程中会产生大量的Policy function和Value function,智能体具有记忆功能,需要将这些函数存储起来,并在每次更新过程中选取最好的,这一过程需要大量的存储空间;

(2)利用RBF也能更快获取最优的Policy function和Value function,不必从大量的历史数据中去查找最优函数。

 

三、仿真与结果分析

 

 

 

 

  • 9
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 10
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值