生活中的数学(为生活建模)(二)

本文探讨了日常生活中的数学原理,包括0/1背包问题的概率模型、等差数列求和的快速计算方法、黄金分割比的概念及其应用,以及经典的鸡兔同笼问题。通过这些实例,展示了数学在解决实际问题中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

生活中的数学(为生活建模)
生活中的数学(为生活建模)(二)
生活中的数学(为生活建模)(三)

样本空间大小的计算

所谓等式,即是对一个问题的不同描述;

(n0)+(n1)++(nn)=(1+1)n=2n

0/1背包问题,也即 n 中商品有或者不取两种状态,其样本空间大小为,2n,自然也就等以 (n0)+(n1)++(nn)

1+2++100

数学王子高斯上小学三年级的时候就以一种极快的方法给出了: 1+2++100 的结果以及计算方法,也即:

1+2+3++98+99+100=(1+100)+(2+99)+(3+98)++(50+51)=101×50=5050

再稍作泛化就是等差数列的前 n 项和公式:
Sn=(a1+an)n2

高斯的解法是稍微有一些问题(不是说错),如果当时老师问的是1加到99,可能还需解决一些问题。所以一种更为 tricky 的方式,也是等差数列前 n 项和的求和公式:
Sn=1+2++99+100Sn=100+99++2+11+2++99+100=Sn+Sn2=101×1002

黄金分割比


这里写图片描述

aa+b=baa2abb2=0x=bax2+x1=0x=512

也即 ba=512 ,自然 ab=5+12

鸡兔同笼问题

我们首先给出其数学(初等代数)形式,通常意义下的求解与解释如下:

x+y=152x+4y=40(1)(2)

然后 (2)2×(1) ,首先解得 y ,最后求解 x。我们首先分析 (2)2×(1) 可能代表的物理(现实)意义。后来我在微信公众号看到了一种有趣的解释,说让鸡与兔同时抬起一只脚,鸡与兔再同时抬起一只脚,剩下的10只脚,每只兔子还剩2只脚,则有五只兔子。

所谓线性方程组其实是对变量自由度的约束,如果只看一式的话,很容易通过 x ,求得 y=15x,再通过等式,可自然解得 x (如果有解的话),进而得到 y,也即两条等式(二元一次方程)组合在一起,其实对变量而言是没有自由度的。

我们再来看其矩阵形式:

Ax=bA|b=[12141540]

方程组有唯一解,也即 R(A|b)=R(Am×n)=n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值