生活中的数学(为生活建模)
生活中的数学(为生活建模)(二)
生活中的数学(为生活建模)(三)
样本空间大小的计算
所谓等式,即是对一个问题的不同描述;
0/1背包问题,也即
n
中商品有取
或者不取
两种状态,其样本空间大小为,
1+2+⋯+100
数学王子高斯上小学三年级的时候就以一种极快的方法给出了:
1+2+⋯+100
的结果以及计算方法,也即:
再稍作泛化就是等差数列的前 n 项和公式:
高斯的解法是稍微有一些问题(不是说错),如果当时老师问的是1加到99,可能还需解决一些问题。所以一种更为 tricky 的方式,也是等差数列前 n 项和的求和公式:
黄金分割比
也即 ba=5√−12 ,自然 ab=5√+12
鸡兔同笼问题
我们首先给出其数学(初等代数)形式,通常意义下的求解与解释如下:
然后
(2)−2×(1)
,首先解得
y
,最后求解
所谓线性方程组其实是对变量自由度的约束,如果只看一式的话,很容易通过
x
,求得
我们再来看其矩阵形式:
方程组有唯一解,也即 R(A|b)=R(Am×n)=n