数论基本定理及应用(三)

数论基本定理

数论基本定理及应用(二)

质数

m 为质数,对于任何 zZm Zm 表示对 m 取余后的整数),对于任何 z≢0,存在唯一一个 z1Zm ,使得 zz11(modm) 。注:这里的 z1 表示数论中逆元的概念,而不是简单的初等代数中的 1z (取倒数),对 z1 的定义是 zz11(modm)

我们以素数 7 为例,寻找 Z7 中每个元素对应的逆元,寻找时需注意的是, z,z1 Zm ,也即 z 的逆元 z1 需要在 Zm 中寻找,还有一点需要注意的是, z1 z 的逆元,同样 z 也是 z1 的逆元,二者互为逆元:


这里写图片描述

对数

无论对数的底是什么,都有:

xlogy=ylogx

两边同时取对数:

logylogx=logxlogy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值