一、梅森素数
1. 定义
2n−1 这种形式的素数就是梅森素数,
2n−1=11…1n−1
2. 举例
- 3=22−1
- 7=23−1
- 31=25−1
- 127=27−1
3. 相关证明
(1)如果 2n−1 是素数(梅森素数),则 n 也是素数。
n 为合数,则 2n−1=2r⋅s−1 , 2r 既是 2r⋅s−1 的因子, 2s 也是 2r⋅s−1 的因子;
二、孪生素数
孪生素数即是相隔 2 (相隔为 2 的含义在于两者同为奇数或者同为偶数,且是相邻的,又因为整个素数序列,只有 2 是唯一的偶数,因此孪生素数其实指的是,两个相邻的奇数,当然要求同为素数)的素数:
- 3、5
- 5 及 7 ;
- 11 及 13;
- 17 及 19;
- 41、43