最优子结构(optimal substructure)

最优子结构是依赖特定问题子问题的分割方式而成立的条件。各子问题具有最优解,就能求出整个问题的最优解,此时条件成立。

比如求广州到北京的最短距离,假设这个路径必经过中间的南京,那么先把路径分割为(广州,南京)和(南京,北京)。分别求出子路径的最短距离然后再连接,就可以得到广州到北京的最短路径。

因此,寻求最短路径的问题可以利用子路径的最优解获得整个问题的最优解。这样就可以证明,最短路径具有最优子结构。

  • 当然最长递增(LIS)

反之,如果不能利用子问题的最优解获得整个问题的最优解,那么这种问题就不具有最优子结构。

很多问题的最优子结构都表现出非常直观的形式,以至于都不需要另外的证明过程。不过,遇到结构不是很直观的问题时,则需要用反证法证明(假设子问题的最优解不是整个问题的最优解 ⇒ ?)。

  • 12
    点赞
  • 18
    收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论 1

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值