Dropout 理论基础与实战细节

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

  • 对于 dropout 层,在训练时节点保留率(keep probability)为某一概率 p (0.5),在预测时(前向预测时)为 1.0

1. dropout 网络与传统网络的区别

传统网络:

  • z(+1)i=jw(+1)ijy()j+b(+1)i=w(+1)iy()+b(+1)i
    • y(+1)i=f(z(+1)i)

而对于 dropout 型网络:

  • r()jBernoulli(p)
  • y˜()=r()y()
  • z(+1)i=jw(+1)ijy˜()j+b(+1)i=w(+1)iy˜()+b(+1)i
  • y(+1)i=f(z(+1)i)



由此可见 dropout 的应用应在 relu 等非线性激活函数之后,

-> CONV/FC -> BatchNorm -> ReLu(or other activation) -> Dropout -> CONV/FC ->;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值