pandas 时间序列分析(一)—— 基础

0. 以时间作为序列的索引

>> from datetime import datetime
>> dates = [datetime(2011, 1, i) for i in [2, 5, 7, 8, 10, 12]]
>> ts = pd.Series(np.random.randn(6), index=dates)
>> ts
2011-01-02   -1.157516
2011-01-05    0.755876
2011-01-07    0.299113
2011-01-08    0.446367
2011-01-10   -1.700069
2011-01-12    0.261344
dtype: float64

进一步查看 ts 的成员:

>> type(ts)
pandas.core.series.Series
>> ts.index
...
>> ts.index.dtype
dtype('<M8[ns]')            # 这是对于小端机的结果;

>> ts.index[0]
Timestamp('2011-01-02 00:00:00')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值