Zhang's Wikipedia

玩就玩大的

特征工程 —— 特征重要性排序(Random Forest)

树模型天然会对特征进行重要性排序,以分裂数据集,构建分支;

1. 使用 Random Forest

from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor


boston_data = load_boston()
X = boston_data['data']
y = boston_data['target']
    # dir(boston_data) ⇒ 查看其支持的属性为 ['DESCR', 'data', 'feature_names', 'target']
rf = RandomForestRegressor()
rf.fit(X, y)

print(sorted(zip(boston_data['feature_names'], map(lambda x: round(x, 4), 
                                                   rf.feature_importances_)),
             key=operator.itemgetter(1), reverse=True))
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/lanchunhui/article/details/79968363
个人分类: 机器学习
上一篇统计学(检验、分布)的 python(numpy/pandas/scipy) 实现
下一篇特征选择 - Filter、Wrapper、Embedded
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭