高精地图建立

what?(HD map)

数据精度为分米,甚至是cm,包含语义信息、语义信息、和时间信息的数据体

空间信息--点云地图

语义信息--车道线、停止线、转向路标、速度标识、人行横道、路牙

时间信息--红绿灯信息、早晚可变车道信息

格式?

Vector Map

lanelet 2

opendrive

Nds

(不同格式的地图可以相互转换)

点云如何创建原理简单描述?

       输入点云数据一般基于激光雷达坐标,激光雷达坐标系和车身坐标为一体,如果将车辆的起始位置作为地图坐标系的原点,那么在之后运动的过程中的某些间隔均匀时刻,如果能够准确的获取车辆的位姿变换,就能将原本基于激光雷达的点云信息转换到地图坐标系下,进而就构成了点云地图的一部分。以此往复,就会构成一张庞大的点云地图。

车辆的位姿变换如何获取?

RTK差分定位(成本较高,需要建立基站,不能有遮挡)

激光SLAM匹配算法(存在累计误差,长时间使用会造成飘移)

轮速计定位(同上)

实际情况中,混合使用

工具(标注语义)信息?

Autoware tools、Unity插件版、VTD、roadrunner等

HD Map的生产流程?

数据融合->点云地图建立(RTK投影)->降采样去噪->语义信息标注

数据融合:一般为相机和激光雷达形成的RGB点云数据、便于车道信息的提取(有些高级激光雷达可以清晰显示车道信息)。也有一些通过边建图边语义识别路况信息的系统,目的是为了降低后面手动语义标注的工作量。

经典的slam算法

视觉slam(VIO):orbslam、vins、svo、dso

激光slam(2d):gmapping、hector、karto、cartographer2d

激光slam(3d):loam系、cartographer3d、Ndt

HDmap和经典建图算法

建图的关键在于位姿变换的准确估计,对于slam来说,位姿变换的计算是通过点云特征匹配优化后得出的。

根据特征匹配行驶的分类

scan to scan:loam系

loam会根据输入scan中的点云根据曲率大小分为平面点边缘点、之后的匹配优化过程也是针对当前输入scan和上一scan的平面点和边缘点来研究进行的,根据边缘点的距离优化公式平面点的距离优化公式来构造优化方程求解位姿变化量。

scan to map: Cartographer、Ndt

二者都是通过当前的scan同已经建好的map(or submap)来进行特征匹配的,和loam提取有曲率特征的点云不同、Catographer将当前scan通过hit的方式来和上一次建好的submap来进行匹配;而Ndt则是将map网格化后计算每个网格的均值方差,并通过当前的scan中的每点落在map网格中的正太分布概率来进行匹配优化的。

### 回答1: 智能网联汽车高精地图白皮书是由CSDN发布的一份关于智能网联汽车高精地图的详细介绍和分析报告。智能网联汽车是指通过一系列传感器、通信设备和计算机技术,使汽车能够实现与外界环境的交互和信息共享。而高精地图是智能网联汽车的重要基础设施,通过精确记录道路和交通信息,为汽车提供导航、驾驶辅助和交通管理等服务。 白皮书首先介绍了智能网联汽车的背景和发展趋势。它指出,智能网联汽车是未来汽车行业的重要发展方向,它能够提高驾驶安全性,优化交通流量,减少能耗排放,并实现出行方式的智能化和个性化。 接着,白皮书重点阐述了智能网联汽车高精地图的定义、特点和应用。高精地图能够提供精确的道路几何信息、交通标志和信号灯信息以及道路辅助设施的位置和属性等数据。这些数据与汽车的传感器数据相结合,可以实现多种智能驾驶功能,如自动驾驶、道路规划和交通优化等。 此外,白皮书还详细介绍了高精地图的制作流程和技术要求。制作高精地图需要在实地进行数据采集和传感器测量,然后通过数据处理和深度学习算法进行地图生成和更新。高精地图的制作需要高精度的测量设备和大量的地理数据,对技术和人力资源要求较高。 最后,白皮书提出了智能网联汽车高精地图的未来发展方向和挑战。它指出,高精地图需要与其他交通基础设施和车辆相互配合,实现全面的智能交通系统。同时,还需要解决数据隐私、网络安全和地图更新等一系列技术和管理问题。 通过阅读这份白皮书,我们可以深入了解智能网联汽车高精地图的工作原理、制作流程和应用前景。它为我们提供了重要的参考和指导,以推动智能网联汽车的发展和应用。 ### 回答2: 智能网联汽车高精地图白皮书是一份由CSDN(国内知名IT技术社区)发布的关于智能网联汽车技术的指南。该白皮书主要介绍了智能网联汽车的定义、发展背景、市场前景以及高精地图在智能网联汽车中的作用。 首先,高精地图是智能网联汽车的核心技术之一。它通过使用卫星导航系统、惯性导航系统和传感器数据等多源数据进行采集,并结合地图数据库和云计算技术进行处理和更新,以提供实时、精确的地理信息数据。这些地理信息数据可以为自动驾驶、车联网和智能交通等应用场景提供支持,提高驾驶的安全性和便利性。 其次,高精地图在智能网联汽车中的作用是多方面的。首先,它可以提供精确的车辆定位和导航功能,使自动驾驶系统能够更加准确地感知周围环境,做出智能驾驶决策。其次,高精地图可以提供交通实时信息,如交通拥堵、车辆行驶速度等,让驾驶人或自动驾驶系统能够更好地规划行驶路线,减少道路拥堵和交通事故发生的可能性。此外,高精地图还可为车辆提供智能的停车指引、充电桩位置等信息,提供更便利的出行服务。 最后,智能网联汽车是未来汽车发展的趋势,具有广阔的市场前景。随着人们对出行安全性和便利性要求的提高,智能网联汽车将成为汽车产业的新方向。而高精地图作为智能网联汽车的基础技术之一,将在智能交通领域发挥重要作用。 ### 回答3: 智能网联汽车高精地图白皮书是CSDN发布的一份关于智能网联汽车高精地图的详细介绍与分析的文档。智能网联汽车是指通过先进的信息技术将汽车与网络连接起来,实现车辆之间、车辆与道路设施之间的互联互通。 在智能网联汽车系统中,高精地图是其中一个重要的组成部分。白皮书从以下几个方面进行了介绍。 首先,白皮书阐述了高精地图的定义,即通过高精度测绘技术获取的数字地图,具有更为精确的道路信息和环境数据。高精地图可以为智能网联汽车提供实时的定位、导航和环境感知功能,提升驾驶安全和出行效率。 其次,白皮书介绍了高精地图的数据获取方式,包括激光雷达、摄像头、GPS接收器等传感器的使用。通过这些传感器获取的数据,可以形成高精度地图,以支持智能车辆的自动驾驶功能。 然后,白皮书探讨了高精地图的数据更新和维护问题。随着道路信息和交通状况的不断变化,高精地图需要定期更新,以保持信息的准确性和实用性。同时,也需要建立高效的数据管理与共享机制,以便各个车企和智能网联汽车系统能够及时获取最新的地图数据。 最后,白皮书分析了智能网联汽车高精地图的应用前景和技术挑战。高精地图将为自动驾驶、智能导航以及车辆与城市交通基础设施的互联互通等领域带来巨大的创新和发展机遇。但同时也面临着数据安全、隐私保护等技术和法律方面的挑战。 总之,智能网联汽车高精地图白皮书从各个方面详细介绍了高精地图的定义、数据获取、更新与维护、应用前景和技术挑战等内容,为智能汽车行业的从业者和研究者提供了重要的参考和指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值