🧱 一、项目背景与现实意义
地震是一种破坏性极强的自然灾害,在地震灾害发生后,如何快速、精准地定位受困人员是救援行动中的核心问题。传统生命探测手段如红外热像仪、声波雷达、人工探测等,往往效率不高、成本高昂,且在复杂环境中精度不足。
随着人工智能的发展,计算机视觉技术为生命探测提供了新思路。本项目以YOLOv5目标检测算法为核心,结合无人机或救援机器人采集的图像,实现灾后废墟场景中对人体目标的自动检测,为一线救援提供及时、高效的智能化支持。
🧠 二、核心技术简介:YOLOv5
YOLOv5简述:
YOLOv5 是由 Ultralytics 团队基于 PyTorch 开发的高效实时目标检测框架。其特点是:
- 🚀 检测速度极快,适用于实时场景
- 🎯 检测精度高,轻量级模型支持边缘部署
- 🔧 支持多类模型结构:YOLOv5n, s, m, l, x
- 📦 集成训练、验证、推理、导出于一体