​四单位联合,崔义、王璐、王娟、陈志刚,最新ACS Catalysis

414971087669d50173410c6b2215f939.jpeg 由可再生能源(如水、风和太阳能)驱动的水电解是一种有前景和有效的绿色氢气生产技术。在通用pH电解质中,碱性水电解一直被认为是工业制氢最可行的途径之一。然而,由于阴极析氢反应(HER)在高pH值介质中动力学缓慢,即使使用贵金属HER催化剂,碱性/中性HER活性比也比在酸中低2-3个数量级。

最近,有人在中性pH电解质中研究了一种由氧化钨载体和负载的贵金属(Ru和Ir)纳米颗粒组成的新型复合催化剂,其中弱酸性HxWO3中间体的形成改变了贵金属周围的酸性化学环境,从而显著提高了贵金属Ru/Ir的HER活性。然而,高价氧化钨的溶解问题限制了其在高pH条件下的进一步应用。因此,开发合理的策略来提高氧化钨的结构稳健性可能会显著促进贵金属催化剂的碱性HER过程。

  47859cf01d8ae9d181e3723fbcfebf35.jpeg

6200c29c95ddf81249e6fd1089e5554a.jpeg 

近日,中国科学院苏州纳米所崔义苏州大学王璐中国科学院上海高等研究院王娟重庆理工大学陈志刚等通过水热法在泡沫镍表面制备了自支撑式WO2负载Ru单原子催化剂(Ru SAC@WO2/NF)。实验结果表明,在碱性介质中,所制备的Ru SAC@WO2/NF催化剂在10 mA cm−2电流密度下的HER过电位几乎为零,Tafel斜率为38 mV dec−1。 

同时,该材料具有显著的实际应用价值,在电流密度为50和200 mA cm−2的条件下,过电位分别仅为40和84 mV,在100 mV过电位下的转换频率(TOF)为21.9 s−1。此外,Ru SAC@WO2/NF复合催化剂在10、50和200 mA cm−2条件下连续制氢50小时以上未发生明显地活性降解,显示出优异的反应稳定性。

  837966c77e571639073e2dcf8fd2a595.jpeg

0a9f963385ecf39d6caa1d68c561ee38.jpeg 

一系列表征结果和理论研究表明,Ru SAC@WO2/NF复合催化剂由于其固体酸催化剂的特性,可以改变碱性HER过程的传统反应途径:1.配位不饱和W原子作为高效的Lewis酸中心可自发或低能垒条件下产生质子;2.所产生的质子可以自发地插入WO2的晶格中以形成HxWOy弱酸中间体,这构建了酸性催化剂表面(pH<7),并且Ru单原子中心通过遵循Volmer-Tafel反应途径加速相邻HxWOy位点的去质子化动力学以重新结合成H2分子。

此外,W-Ru金属键能够增强局部金属性质,将产生的OH−中间体排斥到碱性电解质中,进而保证了Ru单原子的稳定性。综上,该项研究通过结合具有酸性和金属性的WO2及Ru单原子的催化性能,为设计类酸性催化剂表面以强化高电流密度碱性HER反应提供了一条有价值的途径。

Ru single atoms tailoring the acidity of metallic tungsten dioxide for a boosted alkaline hydrogen evolution reaction. ACS Catalysis, 2024.

&nbsp;

数据集介绍:多品类农产品目标检测数据集 一、基础信息 数据集名称:多品类农产品目标检测数据集 图片数量: - 训练集:5,744张图片 - 验证集:546张图片 - 测试集:271张图片 总计:6,561张农业场景图片 分类类别: 覆盖33种常见农产品,包括苹果、香蕉、胡萝卜、番茄、西瓜等主流果蔬,以及甜椒、花椰菜、生姜、大豆等特色农作物,完整涵盖从根茎类到叶菜类的多样化需求。 标注格式: YOLO格式标注,包含标准化边界框坐标及类别索引,支持主流目标检测框架直接调用。 数据特性: 农业场景实拍图像,包含自然光照条件下的单目标与多目标检测场景,适用于真实农业环境下的模型训练。 二、适用场景 农业自动化分拣系统: 为果蔬分拣机器人提供视觉识别能力,支持多品类农产品同步检测,提升自动化产线分拣效率。 智能零售库存管理: 赋能商超智能货架系统,实现农产品自动识别与库存统计,优化生鲜商品周转管理。 精准农业研究: 支持农作物生长监测AI系统开发,通过田间图像实时检测作物分布与成熟度。 农业教育实训: 可作为农业院校AI+农学交叉学科的教学资源,培养智慧农业领域的复合型人才。 三、数据集优势 全品类覆盖: 包含33类全球主流农产品,特别涵盖辣椒、茄子、萝卜等易混淆品种,满足精细化检测需求。 真实场景适配: 数据采集自实际农业环境,包含果蔬堆叠、部分遮挡等复杂场景,确保模型落地实用性。 标注专业化: 采用农业专家参与标注的质量控制机制,边界框精准匹配农产品形态特征。 框架兼容性: 原生支持YOLO系列模型训练,提供.txt标注文件与图像文件的规范目录结构,开箱即用。 应用扩展性强: 除目标检测外,可通过标注转换支持农产品计数、体积估算等衍生应用场景开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值