

大模型之Spring AI实战系列(十一):Spring Boot + OpenAI 集成本地向量数据库Chroma
在前面的文章中,我们已经学习了如何使用 Spring AI 构建基础聊天服务、流式对话、上下文记忆、角色设定、动态提示词模板、结构化输出、语音识别与合成、图像生成等能力。本文将聚焦于**向量数据库(VectorStore)** 的集成与使用。我们将基于 `spring-ai-openai-vectorStore` 示例项目,并结合本地部署的 [Chroma](https://docs.trychroma.com/) 向量数据库,详细介绍如何通过 Spring AI 集成 Chroma 、


在Spring Boot中使用SeeEmitter类实现EventStream流式编程将实时事件推送至客户端
是浏览器与服务器之间的一种通信机制,允许服务器向客户端发送事件流。与WebSocket不同,SSE是单向通信,适用于需要实时更新数据的场景,如通知、新闻推送、实时数据更新等。SSE的工作方式是:客户端发起一个HTTP请求,服务器返回一个持续开放的响应流。相信大家通过博主的简单示例,你已经学会了如何在 Spring Boot 中使用SeeEmitter实现流式编程(这一机制非常适合实时数据推送、事件驱动架构以及微服务中的异步消息处理。通过WebFlux的非阻塞能力,SeeEmitter。



Spring Boot集成Spring Ai框架【详解 搭建Spring Ai项目,以及简单的ai大模型智能体应用,附有图文+示例代码】
Spring AI 是一个用于 AI 工程的应用程序框架。 其目标是将 Spring 生态系统设计原则(如可移植性和模块化设计)应用于 AI 领域,并将使用 POJO 作为应用程序的构建块推广到 AI 领域。Spring AI 的核心是解决了 AI 集成的根本挑战:将您的企业数据和API 与 AI 模型连接起来。Spring AI 提供以下功能:支持所有主要的 AI 模型提供商,例如 例如 Anthropic、OpenAI、Microsoft、Amazon、Google 和 Ollama。

