

Python爬虫(47)Python异步爬虫与K8S弹性伸缩:构建百万级并发数据采集引擎
本文提出了一种基于Python异步爬虫与K8S弹性伸缩的分布式数据采集方案。针对金融风控领域面临的爬虫延迟(传统系统超12小时)、反爬对抗(IP限制10RPM)和成本问题(资源浪费40%),该方案通过优化异步引擎(aiohttp+uvloop)实现2000+并发连接,结合K8S智能扩缩容(HPA+Cluster Autoscaler)动态调整计算资源。生产数据显示,系统将数据采集延迟缩短至15分钟,峰值QPS达800+,错误率降至0.5%,同时通过预测式扩容使月成本降低62%,构建了高时效、低成本、强抗反爬


Python爬虫(54)Python数据治理全攻略:从爬虫清洗到NLP情感分析的实战演进
电商评论数据治理与分析系统实践 某跨境电商平台面临数据质量困境(重复、缺失、异常值等),导致分析项目失败率高达63%。本文构建基于Python的智能处理系统: 分布式爬虫:采用多线程并发抓取,自动处理异常重试,输出标准化评论数据 深度清洗:结合精确字段去重与语义相似度检测(Sentence-BERT模型),解决文本级重复问题 质量验证:通过Pandas Profiling生成数据画像,量化缺失值、异常评分等关键指标 系统目标将可用数据占比从62%提升至98%,为后续情感分析(准确率85%+)奠定基础,有效破


基于大数据爬虫+Python的农产品销售预测系统设计与实现(精品源码+论文+答辩PPT)
摘要:为解决农产品销售企业预测市场需求和销售趋势,提高供应链管理的效率和准确性,设计和实现了一个基于Python的农产品销售预测系统。系统采用前后端分离的架构实现,前端采用Vue.js框架,后端则使用Django框架进行开发。使用Scrapy爬虫框架从“惠农网”进行相关数据的爬取,同时用Spark对数据进行处理,最后存入MySQL数据库。使用ECharts工具进行可视化分析。采用机器学习的线性回归和随机森林回归算法模型进行训练预测,主要针对于采集的数据集进行训练从而捕捉出一个关于价格和成交量的参考估计值。


Github 热点项目 pydoll Python自动化神器!无驱防封+异步高效,轻松绕过验证码,电商监控/爬虫利器
无论是提升客服系统的上下文理解能力,还是打造更懂用户的生活助手,甚至是构建能长期陪伴的虚拟伙伴,Mem0都能让AI服务摆脱"金鱼记忆",实现真正个性化且持续成长的智能体验。该工具支持主流AI模型,内置可视化界面实时查看操作过程,特别适合需要自动化处理网页数据的场景,比如电商运营、求职助手、社交媒体管理等领域,让程序能自主完成重复性网页操作。该项目包含来自多个领域的广泛 API,涵盖了从动物、动漫到天气、金融等多个主题,旨在为开发者和爱好者提供丰富的资源,以便在自己的项目中使用。