
Python爬虫(30)Python爬虫高阶:Selenium+Scrapy+Playwright融合架构,攻克动态页面与高反爬场景
本文探讨了在动态页面和反爬技术日益复杂的背景下,如何通过技术融合构建高效爬虫系统。传统基于requests的静态页面抓取方法已无法应对动态渲染和反爬机制,而单一的自动化工具如Selenium或Scrapy在效率、稳定性和功能扩展性上存在局限。为此,文章提出了一种结合Selenium、Scrapy和Playwright的分层爬虫架构,旨在实现动态渲染、反爬对抗和高效采集的协同能力。 核心架构包括: Selenium:处理复杂交互逻辑,模拟用户操作。 Playwright:执行轻量级动态渲染,支持多浏览器。 S
计算机毕业设计Hadoop+PySpark+Scrapy爬虫农产品推荐系统 农产品爬虫 农产品可视化 农产品大数据 大数据毕业设计(代码+LW文档+PPT+讲解视频)
本文提出了一种基于Hadoop+PySpark+Scrapy的分布式农产品推荐系统,针对农产品电商市场供需匹配效率低下的问题。系统通过Scrapy爬虫突破数据孤岛,利用Hadoop分布式存储和PySpark并行计算构建特征工程框架,结合时空感知矩阵分解与多模态特征融合算法。实验结果显示,新上市农产品冷启动准确率提升28.5%,推荐转化率提高41.2%,在山东寿光蔬菜基地试点中降低流通成本37%。该系统有效解决了农产品数据分散性、特征工程复杂度和冷启动准确率等核心痛点。


