
【中草药识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
中草药识别系统,基于TensorFlow搭建Resnet50卷积神经网络算法,通过对10种常见的中草药图片(‘丹参’, ‘五味子’, ‘山茱萸’, ‘柴胡’, ‘桔梗’, ‘牡丹皮’, ‘连翘’, ‘金银花’, ‘黄姜’, ‘黄芩’)数据集进行训练,最后得到一个识别精度较高的模型,然后搭建Web可视化操作平台。技术栈项目前端使用Html、CSS、BootStrap搭建界面。后端基于Django处理逻辑请求基于Ajax实现前后端数据通信技术栈项目前端使用Html、CSS、BootStrap搭建界面。
计算机毕业设计模板|毕设答辩|毕业设计项目|毕设设计|计算机毕业设计|大数据深度学习Django基于用户画像的图书推荐系统
摘要:本文介绍了一个基于Django框架开发的用户画像图书推荐系统。该系统采用B/S架构,结合Python、MySQL等技术,实现了图书信息管理、用户画像分析和个性化推荐功能。系统通过Xpath爬虫从豆瓣网获取图书数据,利用数据分析模块生成用户画像和推荐结果。文章详细阐述了系统开发背景、技术架构、功能设计及实现过程,包括用户管理、图书分类、热门书籍分析等核心模块。测试结果表明,该系统能有效提高图书信息管理效率,为用户提供个性化推荐服务,具有较好的实用性和可扩展性。该系统解决了传统图书管理效率低下的问题,实现
【蔬菜识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
蔬菜识别系统,基于TensorFlow搭建卷积神经网络算法,通过对8种常见的蔬菜图片数据集(‘土豆’, ‘大白菜’, ‘大葱’, ‘莲藕’, ‘菠菜’, ‘西红柿’, ‘韭菜’, ‘黄瓜’)进行训练,最后得到一个识别精度较高的模型,然后搭建Web可视化操作平台。前端后端:Django算法:TensorFlow、卷积神经网络算法具体功能系统分为管理员和用户两个角色,登录后根据角色显示其可访问的页面模块。登录系统后可发布、查看、编辑文章,创建文章功能中集成了markdown编辑器,可对文章进行编辑。





