可以使用autoware的小工具运行相关节点,也可以在终端运行,这里我只介绍后者。
1、首先安装docker版本的autoware,这里不赘述。
2、进入、运行docker-autoware
$ cd docker
$ cd generate
$ ./run(运行完即进入docker环境)
$ cd Autoware
3、使用autoware,相机内参标定:
3.1 docker-autoware终端运行
$ rosrun autoware_camera_lidar_calibrator cameracalibrator.py --square SQUARE_SIZE --size MxN image:=/image_topic
注:SQUARE_SIZE:单个棋盘格的大小,单位m;MXN:棋盘格的横纵角点数量;/image_topic:rosbag包发布的图像话题。
3.2 运行rosbag:$ rosbag play -l *******.bag(-l 为循环播放,为了保证采样量)
3.3 保存内参标定结果
在界面点击calibrate(按钮变为绿色之后),稍等片刻,终端会显示内参标定结果;点击save,会将内参标定结果保存在文件中,默认是保存在/home下
4、相机激光雷达外参标定:
外参标定最好用高反光物体,这样轮廓好识别,进一步能
ubuntu/docker-autoware/rosbag离线相机激光雷达外参标定
最新推荐文章于 2024-09-22 14:31:39 发布
本文介绍了如何在Docker版Autoware中使用ROSbag进行相机内参和激光雷达相机外参标定。首先安装docker-autoware并运行相关节点,然后通过cameracalibrator.py进行相机内参标定,接着使用camera_lidar_calibration.launch进行外参标定,最后探讨了重投影的过程和方法。整个过程强调了高反光物体选择和点对多样性的关键作用。
摘要由CSDN通过智能技术生成