ubuntu/docker-autoware/rosbag离线相机激光雷达外参标定

本文介绍了如何在Docker版Autoware中使用ROSbag进行相机内参和激光雷达相机外参标定。首先安装docker-autoware并运行相关节点,然后通过cameracalibrator.py进行相机内参标定,接着使用camera_lidar_calibration.launch进行外参标定,最后探讨了重投影的过程和方法。整个过程强调了高反光物体选择和点对多样性的关键作用。
摘要由CSDN通过智能技术生成

可以使用autoware的小工具运行相关节点,也可以在终端运行,这里我只介绍后者。
1、首先安装docker版本的autoware,这里不赘述。
2、进入、运行docker-autoware
$ cd docker
$ cd generate
$ ./run(运行完即进入docker环境)
$ cd Autoware
3、使用autoware,相机内参标定:
3.1 docker-autoware终端运行
$ rosrun autoware_camera_lidar_calibrator cameracalibrator.py --square SQUARE_SIZE --size MxN image:=/image_topic
注:SQUARE_SIZE:单个棋盘格的大小,单位m;MXN:棋盘格的横纵角点数量;/image_topic:rosbag包发布的图像话题。
3.2 运行rosbag:$ rosbag play -l *******.bag(-l 为循环播放,为了保证采样量)
3.3 保存内参标定结果
在界面点击calibrate(按钮变为绿色之后),稍等片刻,终端会显示内参标定结果;点击save,会将内参标定结果保存在文件中,默认是保存在/home下
4、相机激光雷达外参标定:
外参标定最好用高反光物体,这样轮廓好识别,进一步能

这段命令的作用是: 1. 执行 `source /etc/profile` 命令,使得之前添加的 Go 语言环境变量生效; 2. 执行 `mkdir -p /home/ubuntu/gopath/src/github.com/hyperledger` 命令,创建一个目录用于存放 Hyperledger Fabric 的源代码; 3. 执行 `cd /home/ubuntu/gopath/src/github.com/hyperledger` 命令,切换到 Hyperledger Fabric 代码存放的目录; 4. 执行 `cp /resource/docker-compose /usr/local/bin` 命令,将预设好的 `docker-compose` 文件拷贝到 `/usr/local/bin` 目录下; 5. 执行 `chmod +x /usr/local/bin/docker-compose` 命令,添加可执行权限; 6. 执行 `cp /resource/fabric-samples.tar.gz /home/ubuntu/gopath/src/github.com/hyperledger` 命令,将预设好的 Hyperledger Fabric 样例程序压缩包拷贝到 `github.com/hyperledger` 目录下; 7. 执行 `cd /home/ubuntu/gopath/src/github.com/hyperledger` 命令,切换到 Hyperledger Fabric 样例程序所在的目录; 8. 执行 `tar -xf ./fabric-samples.tar.gz` 命令,解压 Hyperledger Fabric 样例程序压缩包; 9. 执行 `source /etc/profile` 命令,新加载 Go 语言环境变量; 10. 执行 `cd /home/ubuntu/gopath/src/github.com/hyperledger/fabric-samples/scripts` 命令,切换到 Hyperledger Fabric 样例程序的脚本目录; 11. 执行 `./bootstrap.sh 1.4.0 1.4.0 0.4.14` 命令,安装 Hyperledger Fabric 所需的依赖组件; 12. 执行 `cd /home/ubuntu/gopath/src/github.com/hyperledger/fabric-samples/first-network` 命令,切换到 Hyperledger Fabric 样例程序的第一个网络目录; 13. 执行 `./byfn.sh up -s couchdb` 命令,启动第一个网络,并使用 CouchDB 作为状态数据库; 14. 执行 `docker-compose -f docker-compose-cli.yaml -f docker-compose-couch.yaml -f docker-compose-kafka.yaml start` 命令,启动 Fabric 网络中的 Docker 容器; 15. 执行 `../bin/configtxgen -profile TwoOrgsChannel -outputCreateChannelTx channel-artifacts/test.tx -channelID test` 命令,使用 configtxgen 工具生成通道交易配置文件和创世块配置文件。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值