法线向量的每个分量(X, Y, Z)范围为什么是[-1, 1]


1. 法线向量是什么?

  • 法线向量是一个表示表面朝向的箭头,它的起点在表面上,指向表面“外面”。
  • 在3D空间里,任何一个方向都可以用一个三维向量 (X, Y, Z) 来表示。

2. 为什么范围是[-1, 1]?

2.1 单位向量的定义

  • 法线向量通常是单位向量,也就是长度为1。
  • 单位向量的每个分量(X, Y, Z)都可以是正的、负的或零,具体取决于它指向哪里。

2.2 以球面为例

  • 想象一个原点为中心、半径为1的球体。
  • 球面上的每一个点都可以用一个单位向量 (X, Y, Z) 表示。
  • 这些分量的取值范围就是从-1到1。
    • X = -1 表示完全向左,X = 1 表示完全向右
    • Y = -1 表示完全向下,Y = 1 表示完全向上
    • Z = -1 表示完全向后,Z = 1 表示完全向前

2.3 为什么不是[0, 1]?

  • 如果只用[0, 1],就只能表示“一个方向的半球”,无法表示所有可能的方向。
  • [-1, 1]能完整覆盖整个球面,所有方向都能表示。

3. 生活中的比喻

  • 想象地球的经纬度:
    • 经度可以是东(正)或西(负),纬度可以是北(正)或南(负)。
    • 法线向量的分量也是这样,有正有负,能指向任何方向。

4. 法线贴图为什么要把[-1, 1]映射到[0, 1]?

  • 因为图片的颜色通道只能存01(或0255),不能存负数。
  • 所以要做一个“平移+缩放”:
    • -1 → 0
    • 0 → 0.5
    • 1 → 1

5. 总结口诀

“法线单位球,分量正负有;方向全覆盖,范围[-1, 1]守。”


我们继续深入讲讲法线向量为什么是单位向量、为什么分量范围是[-1, 1],以及它在光照计算中的作用


1. 为什么法线向量要是单位向量?

1.1 单位向量的定义

在这里插入图片描述

1.2 为什么要单位长度?

  • 法线的方向才重要,长度没意义。
  • 在光照计算(如点乘、反射等)中,只有单位向量才能保证结果正确。
  • 如果不是单位向量,光照会变得不准确(比如会变暗或变亮)。

2. 为什么分量范围是[-1, 1]?

  • 因为单位球面上,X、Y、Z的最大最小值就是-1和1。
  • 例如:
    • (1, 0, 0):完全朝X正方向
    • (-1, 0, 0):完全朝X负方向
    • (0, 1, 0):完全朝Y正方向
    • (0, 0, 1):完全朝Z正方向
    • (0, 0, -1):完全朝Z负方向
  • 任何球面上的点,X、Y、Z都不会超过这个范围。

3. 法线向量在光照计算中的作用

3.1 点乘(Dot Product)

在这里插入图片描述

3.2 法线贴图的作用

  • 法线贴图就是用颜色编码,把每个像素的法线方向存起来。
  • 这样可以让表面看起来有很多细节(比如凹凸、划痕),即使模型本身是平的。

4. 形象理解

  • 想象你用手电筒照一个球,球面每个点的“朝向”都不一样,这就是法线向量。
  • 法线贴图就是把这些“朝向”信息用颜色存下来,给平面“伪装”出复杂的表面。

5. 数学小结

  • 单位向量的每个分量范围是[-1, 1],因为它们必须满足 (X^2 + Y^2 + Z^2 = 1)。
  • 只有单位向量,点乘和反射等光照计算才准确。

6. 口诀升级

“法线单位球,分量正负有;光照靠方向,长度一为首。”


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你一身傲骨怎能输

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值