导语
随着MMORPG(大型多人在线角色扮演游戏)行业的不断发展,游戏的玩法设计日益向高自由度和丰富性迈进。这种极致的设计指标虽然能够提升玩家的沉浸感和参与度,但同时也带来了前所未有的挑战。在进行这样的游戏开发时,我们需要面对视野、内存和引擎等方面的复杂性,尤其是在处理海量数据时。这些问题不仅可能导致性能瓶颈,也对用户体验构成威胁。本分享将深入探讨在项目研发过程中我们遇到的各种性能挑战,并提出我们的解决方案,以期为同行业的开发者提供有益的参考。
1. 视野管理
在高自由度的MMORPG中,玩家可以自由探索广袤的游戏世界。这就导致了在同一时间内需要渲染的物体数量大幅增加,从而对视野管理提出了新的要求。
挑战:
- 渲染负担:在开放世界中,玩家视野范围内的物体越来越多,导致显存和计算能力的压力增大。
- 视野切换:快速切换视野时,可能会出现掉帧、模糊等现象,影响玩家体验。
解决方案:
- 物体剔除技术:使用视锥体剔除(Frustum Culling)和遮挡剔除(Occlusion Culling)技术,动态计算视野内可见的物体。
- LOD(细节层次)系统:根据物体的距离采用不同的细节层次,远处物体使用低分辨率模型,减少计算复杂度。
- 合并静态物体:将静态物体合并为单一的网格,减少 Draw Call 数量,有效提升渲染性能。
2. 内存管理
在高自由度玩法设计中,海量数据的管理是一个不可忽视的方面。玩家在游戏世界中建立的各种状态、交互、物体等都需要合理的内存管理策略。
挑战:
- 内存泄漏:由于物体和状态持续生成并在适当时机销毁,容易产生内存泄漏的问题。
- 动态资源加载:即时加载和卸载资源,保证游戏运行顺畅,同时避免因内存不足导致的崩溃。
解决方案:
- 智能内存管理:通过对象池技术重用对象,降低频繁创建和销毁带来的内存压力。
- 异步加载:在后台加载和管理资源,确保游戏主线程不会因加载而阻塞。
- 资源优先级管理:根据玩家的所在区域和行为设定资源加载的优先级,确保重要资源优先加载。
3. 引擎性能优化
高自由度玩法所需的复杂场景和交互,必须依赖于强大的游戏引擎来支撑。然而,常规引擎可能无法满足这些挑战。
挑战:
- 计算瓶颈:复杂的模拟和物理引擎处理导致的性能降低。
- 网络延迟:在多人环境下保持同步的状态同步需要极大的性能支持。
解决方案:
- 多线程计算:将复杂的运算分散到多个线程中处理,充分利用多核CPU的特点,提升性能。
- 自定义引擎优化:针对项目需求,调整和优化引擎机制,例如减少不必要的物理计算和状态更新频率。
- 网络优化:使用差异同步和状态压缩技术,减少网络传输的数据量,提高网络性能。
结论
在MMORPG中引入高自由度玩法是一个极具挑战的任务,但通过针对视野管理、内存管理和引擎性能优化的有效策略,我们能够克服这些障碍,提供更流畅的游戏体验。希望通过本次分享,开发团队能够获得启示,更好地应对未来可能面临的性能挑战,共同推动MMORPG的创新与发展。
天刀游戏概述
接下来,我们正式进入今天探讨的主题。首先,让我们简单介绍一下《天刀》这款游戏。《天刀》是一款于2015年上线的武侠题材MMORPG端游,具有丰富的武侠文化内涵和精美的画面设计。其中,最具特色的玩法是“帮派联赛”,这是一种强调团队合作与对抗的群战模式,吸引了大量玩家参与。
MMORPG的特征与玩家成长
作为一款MMORPG,玩家在《天刀》中成长的核心指标是“功力”。功力水平直接决定了角色在游戏中的战斗表现,通常情况下,功力越高,玩家在面对同样操作水平的对手时,胜算也就越大。然而,获取功力并不容易,玩家需要每日参与固定的活动。错过活动可能导致功力落后,这让很多玩家感到游戏任务繁重,甚至有些人将其视为一种负担,类似于上班的感觉。
引入高自由度玩法的背景
为了应对这一情况,在2020年初我们开始探讨如何在《天刀》中引入更高自由度的玩法,特别是在建造和探索方面。我们希望通过设计能够让玩家在游戏中享受更多自由,而不仅仅是追求不断提升的功力数值。这种思路最终促成了新的内容规划:一系列以自由建造为核心的多人家园系统,以及基于大世界的探索玩法。
自由建造玩法
在这个更新中,我们允许玩家自由设计和建造自己的家园。玩家可以根据自己的喜好进行个性化的装饰与布局,这种建造体验不仅增加了玩法的多样性,也促进了玩家间的交流与互动。不同风格的家园展现了玩家的个性,形成了一个充满创意的社区。这样的设置使得游戏中的社交体验得以提升,同时也为玩家提供了新的目标与成就感。
大世界探索玩法
除了自由建造,我们还加入了大世界探索的元素。玩家可以在广袤的游戏世界中探索,发现丰富的任务、资源以及奇遇。这种探索不仅提供了独特的游戏体验,也为传统的角色成长提供了新的途径。通过探索,玩家能够找到稀有物品、完成任务并获得经验,从而提升自己的功力,以更轻松的方式享受游戏的乐趣。
结合MMO特色
在优化设计的过程中,我们特别注意将这些新元素与MMORPG的核心机制相结合。比如,玩家的家园可以提供特殊的资源和成长机会,使其不仅是一个休闲区,更成为提升实力的一部分。这种创新让玩家在追求角色成长时,能够体验到更多的乐趣和自由。
结语
通过引入高自由度的建造与探索玩法,《天刀》有效缓解了玩家在传统功力竞争中可能感受到的压力,丰富了游戏的内容与体验。这种转变不仅增加了玩家的参与度,还让他们在游戏中找到更多乐趣与创意。在接下来的交流中,我们将深入探讨在这个过程中面临的具体挑战和解决方案,希望能与大家共同分享心得与经验!
在讨论项目研发过程中遇到的复杂问题之前,我们先对家园玩法的技术基础进行一个简要介绍,重点在于两个基本概念:家园和物件。
家园与物件的基本概念
家园:在天刀的家园玩法中,家园是一个位于大世界地图上的288米乘288米的正方形区域,我们称之为“家园地皮”。每个家园的主人可以自由在这块区域内摆放物件。
物件:物件是由系统提供的,是玩家在家园地皮上摆放的基本单位。这些物件可以是预制的大型建筑、桌椅板凳,甚至是基础的积木块。物件的碰撞精度达到了厘米级,这相较于天刀原有地图的20厘米碰撞精度有了显著提高。
技术指标
在设计家园系统时,我们设定了一些关键的指标:
- 每个家园内最多可以摆放4万个物件。
- 家园地图上共有84个家园,这样在不考虑已预放置的房屋、桥梁等物体的情况下,玩家摆放的物件总数接近300万个。
- 此外,家园地图还能够支持最多400个玩家同时聚集活动。
技术挑战
基于上述指标,我们首先需要考虑现有技术能否支持如此大规模且高精度的物件承载。天刀原有的3D地图碰撞描述采用的是体素方案,此外还有多层网络和多边形网格这两种碰撞描述方案。每种方案都具有其独特的优缺点,适用于不同的场景,其计算开销和内存开销也有所差异。
大致而言:
- 体素方案:适用于碰撞数量较少、碰撞精度要求不高的稀疏碰撞地图。这种方案在计算和内存开销上都表现得比较均衡。
- 多层网络与多边形网格:对于需要高精度碰撞且物体数量较多的地图,多边形网格方案是更合适的选择。虽然它在计算性能上稍逊于体素方案,但其内存占用都相对较少,尤其是在高精度碰撞的情况下。
因此,在综合考虑后,我们决定引入NVIDIA的PhysX引擎作为高自由度玩法地图的碰撞管理引擎。由于PhysX能够提供高效的物件数据设计、摆放碰撞管理及连通性检测,它能够较好地满足我们的技术需求。
结论
尽管我们在技术层面经过了比较严谨的考量,但在实际开发过程中仍然会面临不少挑战,我们期待在接下来的讨论中深入探讨这些问题的具体解决方案。
在经过前期的技术铺垫后,我们现在进入本次分享的核心部分——“海量之道”。这个名称的由来是因为,许多问题在没有达到一定规模时并不明显,而在实现我们的设计目标时,这些问题往往会以超高的设计指标显现出来。
典型家园视野场景的问题
让我们首先看一个具体的场景:典型的家园视野。在传统MMO游戏中,玩家视野内的物件数量(包括玩家、NPC和掉落物)通常不超过1千。然而,在我们的家园设置中,情况截然不同。
- 根据设计指标,单个家园允许摆放多达3万个物件。
- 在一个家园小区中,假设有5个相邻的家园,那么在这个区域内,仅来自家园的物件数量就可能高达15万个。
- 从聚集的角度来看,在一个边长为52米的区域内,玩家最多可以看到1万个物件。
家园视野设计指标
我们希望玩家在家园内的任意位置都能看到整个家园的全貌。根据常规的9宫格视野方案,我们考虑到家园的边长接近200米,结果是家园视野应该配置为8乘8宫格。这就意味着,当玩家进入一个区域时,会有8个新的区域被加载到玩家视野中,最终会需要向客户端同步最多8万个物件,产生的数据量约为4MB。
显然,这样的数据量一次性传输将会对客户端造成极大的压力,可能导致掉线。因此,我们必须找出方法减少单次同步的数据量。
优化思路
经过与团队的探讨,我们发现,在家园的实际操作中,玩家并不需要清晰地看到200米之外的每个物件。站在家园的边界上,看到对面的房屋和院墙是合理的,但200米以外的小物件(如茶壶、水杯等)并不需要渲染得如此清晰。由此,我们确定了以下优化思路:
- 物件分级可见性:根据物件的尺寸和重要性,将其分为四个级别。为每个物件设置不同的可见范围。这样一来,玩家在移动时,只有重要的物件会被同步,而较小物件的细节则可以省略。
我们进行了一次系统统计,发现大多数物件属于中等大小(medium)级别,其可见范围为4乘4宫格。通过这种物件分级的方法,玩家在移动过程中,单次需要同步的区域从8个减少到了4个,这使得单次同步的数据量从4MB减少到了2MB。
进一步的优化
虽然这一优化已经显著降低了数据量,但2MB依然是一个较大的数字,仍有可能导致客户端掉线。因此,我们仍需继续深入探讨和实施更多的优化措施。接下来,我们将探讨其他可能的优化策略,例如对象的LOD(细节层次)管理、可见性剔除技术等方法,以确保在保持游戏流畅性的同时,使玩家体验到更高质量的家园玩法。
在我们探讨降低单次同步数据量的方法时,我们提出了一个重要的思路:既然一次同步最多8万个物件的数量过于庞大,那么我们能否通过将需要同步的数据在时间轴上进行分散,以多次方式将数据同步下来?
分批同步的思路
对于视野的同步特别需要考虑,分批同步的过程中可能会发生视野的变化。这些变化主要可以分为两类:
-
玩家移动引起的视野变化:
- 新的around进入视野。
- 一些around离开视野。
-
物件操作引发的视野变化:
- 物件在玩家视野内的新位置需要同步。
- 物件离开玩家视野也需要进行通知进行视野删除。
处理玩家移动触发的视野变化
我们首先来看由玩家移动引起的视野变化。此时的处理过程可以概括为以下几个步骤:
-
更新待同步列表:
- 将进入玩家视野的around编号添加到待同步列表中。
- 将离开玩家视野的around编号从待同步列表中删除。
- 对于需要移除的around,立即通知客户端进行视野删除。
-
定时同步数据:
- 系统定时获取待同步列表中的around编号,将其数据同步到客户端。
这种方法能够高效地管理新的around数据,通过及时更新与维护待同步列表,确保客户端只需关注与当前视野相关的物件数据。
处理物件操作触发的视野变化
对于物件位移情况,服务器会根据物件的可见范围广播相关更新给所有受到影响的玩家。具体实施步骤再细分如下:
-
监听物件位移:
- 当一个物件发生位移时,检查该物件是否处于某个players的可视范围内。
-
更新客户端:
- 客户端接收到位移通知后,将通过判断该物件所在的around数据是否已经同步完毕,从而决定是否渲染该物件。如果数据未同步,客户端将不进行渲染,等待数据到达后再进行更新。
优化结果
通过以上分批同步和针对不同视野变化的处理方案,我们实现了如下优化:
- 玩家进入新的around后,单次只需要同步1个around的视野数据。
- 这样一来,单次同步的数据量已经降至约500KB,这对网络传输和客户端处理能力来说,都是一个比较可接受的水平。
这种优化大大减少了网络流量和传输负担,同时也提高了玩家在家园场景中流畅操作的体验。后续,我们还可以进一步探索其他优化方案,例如压缩数据传输、动态调整同步频率等,以应对更复杂的场景需求。
视野缓存降低宽带
在多人场景中,尤其是在家园玩法中聚集大量玩家进行群体活动时,面临的视野同步挑战会更加复杂。例如,当300名玩家在同一区域内进行聚会时,由于频繁的移动,很多around(小区域)将会不断地进入和离开玩家的视野,这将导致大量的数据反复同步,给网络带来较大压力。
视野缓存方案的提出
为了应对多人场景中视野数据重复同步带来的问题,我们提出了一种视野缓存方案。该方案的核心在于记录around中物件的操作序列号,以此来判断何时需要同步完整的视野数据。这一思路的实现步骤如下:
-
序列号维护:
- 在每个around中维护一个物件的操作序列号。当有物件操作发生(如移动、添加或删除物件)时,该序列号加1。
-
视野同步流程:
- 当新的around需要同步到客户端时,服务器首先将该around的序列号发送给客户端,而不是立即发送完整的视野数据。
-
客户端处理:
- 客户端接收到序列号后,会将其与本地缓存的序列号进行比对。
- 一致:如果序列号相同,说明此around中的物件数据未发生变化,客户端便可以直接使用缓存中的视野信息进行渲染,而不需要再次请求服务器,节省了带宽和处理时间。
- 不一致:如果序列号不同,客户端则需要向服务器请求完整的视野数据以更新本地状态。
- 客户端接收到序列号后,会将其与本地缓存的序列号进行比对。
优化效果
通过采用视野缓存方案,带来的优化效果主要体现在以下几个方面:
-
减少同步量:由于大多数around的视野数据在频繁的移动中并不会发生变化,视野缓存可以有效降低需要传输的实时数据量,避免了因频繁的视野变化而导致的重复数据同步。
-
降低带宽需求:通过减少每次同步的数据量,整体的带宽需求大幅降低,有助于提高多人场景中的网络稳定性,提升用户体验。
-
提高处理效率:减少了不必要的数据请求,客户端可以更快地处理视野更新,改善整体性能。
结论
视野缓存方案不仅适用于多人场景下的家园玩法,也为其他需要高频率数据同步的网络游戏提供了一个良好的思路。通过有效地管理和优化数据同步方式,我们可以在保证游戏体验的同时,大幅减轻服务器和网络的负担。在后续开发中,我们将继续关注玩家行为和数据需求的实际情况,进一步优化视野同步机制,以适应更复杂的游戏环境和需求。
在家园玩法中应用模板的场景下,如何优化视野计算以确保玩家体验是一个关键问题。面对大规模的物件摆放,尤其是在处理包含大量物件(如3万个物件)的模板时,视野计算的耗时问题显得尤为突出。在这个过程中,我们通过深入分析视野计算的逻辑和优化方向,提出了相应的解决方案。
视野计算的基本逻辑
如前所述,视野计算的基本步骤包括以下环节:
- 遍历所有物件:遍历模板中的所有物件,计算各自的可见范围。
- 父子关系:考量物件之间的父子关系,计算物件及其子物件的可见范围的并集。
- 汇总可见范围:将可见范围相同的物件进行汇总,广播给对应的玩家。
性能瓶颈分析
通过进行性能剖析(profiling),我们发现75%的CPU开销集中在视野计算的逻辑上,而总CPU开销达到6.4G个tick,相当于卡住CPU约2秒。这表明视野计算的效率亟需提升。
视野计算的优化方向
优化视野计算的原则主要有两个方向:
- 任务队列分散计算:将计算任务在时间轴上进行分散,以避免CPU负担集中。
- 计算并行化:通过将大逻辑分解成互相独立的子逻辑,进行并行计算,从而提升效率。
在这个场景中,我们选择首先考虑视野计算的并行化,目的是利用多线程来减少处理时间。
放置翻转的关键步骤
放置翻转的步骤是实现并行化计算的关键,它包括:
- 遍历物件并计算可见范围:在遍历模板中的所有物件时,依据物件的层级关系,初步计算每个物件的可见范围,并将物件信息加载到可见范围内所有相关around的实体列表(entity list)中。
- 建立缓存:在找到父节点时,可以建立缓存以避免重复查找。这将有助于减少查找时间。例如,在查找物件的父节点时,一旦找到其父节点,就不必再向上查找,降低了计算复杂度。
并行化任务处理
通过独立的around进行视野计算,计算父节点的逻辑可以放置到线程池中处理。具体步骤如下:
- 针对每个指定的around,遍历其entity list,找出所有的父节点,并与entity list合并,形成一个同步列表(sync list)。
- 将获得的sync list添加到主线程的广播队列中,随后分批同步数据给相关玩家。
优化效果
该优化策略有效地利用了多线程技术,视野计算的耗时被大幅降低,加载整个家园模板的耗时基本只与单个around的加载耗时相关。这种方法不仅解决了CPU卡顿的问题,同时还提升了玩家在使用模板时的整体体验。
结论
综上所述,针对家园玩法中模板应用的视野计算优化问题,通过分析计算流程和瓶颈,有针对性地采用放置翻转和并行化处理的策略,显著改善了性能,减少了如何在处理高量物件时的耗时。这些优化策略的成功实施,展示了在高并发场景中提升玩家体验的潜力,并为未来在类似场景中的优化提供了参考。
在海量游戏场景中,碰撞检测带来的内存开销是一个重要的性能瓶颈,特别是在像《天刀》这样拥有高自由度玩法的游戏中。通过对物件碰撞数据的优化,我们可以显著降低内存占用,提升游戏的可扩展性与玩家体验。以下是针对海量碰撞造成内存开销问题的解决方案。
背景
在《天刀》的玩法设计中,每个服务器需要承载大约1万个家园,每个家园包含约3万个物件,由此导致的碰撞数据将占用大量内存。具体而言,单个家园的碰撞数据占用约120MB,1万个家园总共需要1200GB内存。此外,加上地图预制的碰撞数据,整体碰撞内存的需求接近1600GB,而我们的单台服务器内存仅有166GB,这显然是不可行的。
物件碰撞数据结构
为了有效解决物件的内存占用问题,首先需要理解物件碰撞的数据结构。通常,物件的碰撞检测依赖于PhysX引擎,以下是其基本结构:
- Building Entity Instance:业务层封装的顶层结构,负责管理物件。
- PxActor:PhysX中可进行碰撞检测的基本单位,包含若干个PxShape。
- PxShape:保存具体的碰撞数据及该碰撞的缩放描述。
在PhysX中,不同的碰撞实体对应不同的PxActor实例,但相同的物件实例(如多把相同的椅子)则可以共享相同的PxShape数据。
解决方案:PxShape共享方案
基于PhysX的这一特性,我们设计了PxShape共享方案,以减少物件碰撞数据的内存开销。具体步骤如下:
- 物件原型数据结构:在物件原型的数据结构中,维护一个PxShape的链表,指向不同缩放的PxShape实例。
- 查找与共享:
- 当需要创建新的物件实例时,首先查找链表,检查是否已存在相同缩放的PxShape。
- 如果存在,则直接将该PxShape挂接到新的物件的PxActor实例。
- 如果不存在,则创建新的PxShape并加入到链表中。
内存优化效果
通过这种设计,物件占用的总碰撞内存上限就变成了与物件原型的种类数量和每种物件原型的平均缩放数量息息相关。实际操作中,由于提供的缩放级别有限(即20个缩放),这样设计保证了即使一个进程中承载大量物件,碰撞内存的占用也不会超过所有物件原型内存占用的20倍。
例如,若当前玩法中总共提供的物件种类在1000个左右,那么计算出所有物件原型的碰撞内存占用不过12MB,这样每个家的物件碰撞内存占用最多不会超过240MB,总体下来,1万个家园每个家园放3万个物件的情况下,内存占用将控制在约21GB左右。
结论
通过PxShape共享方案,我们有效地瓶颈了海量物件带来的内存开销问题,原本的1200GB内存需求被惊人地缩减到21GB,减少了资源的浪费,降低了服务器硬件成本,也提升了游戏的可扩展性。这一优化不仅提高了内存管理效率,也为未来更多高自由度玩法的推出提供了良好的基础与支持。
在《天刀》的开发过程中,除了优化海量物件碰撞的内存开销之外,地图的碰撞内存占用也是一个重要的问题。特别是由于不同的家园分线和探索位面的存在,地图实例通常会持有各自的碰撞数据,这会导致随着地图实例数量的增加,内存开销也随之增加。
地图碰撞内存占用的问题
在当前的实现中,各地图实例都单独管理自己的碰撞数据,以便于进行连通性检测。这种做法虽然在逻辑上是合理的,但在实际应用中,特别是在大量实例的情况下,会造成显著的内存开销,因为每个地图实例都持有一份相同的静态碰撞数据。
动静分离方案
为了降低地图碰撞内存的占用,我们提出了动静分离的方案:
-
静态碰撞与动态碰撞分离:
- 将地图原型中管理静态碰撞数据,而各个地图实例仅管理动态碰撞数据。
- 这样,静态碰撞数据在内存中只存在一份,无论有多少地图实例,它们将共享相同的静态碰撞信息。
-
减少内存占用的好处:
- 由于只存储一份静态碰撞数据,这大大降低了内存需求,使得内存占用与地图种类数量直接相关。
- 假设新玩法的地图有两个,那么在单个进程中,地图碰撞的内存占用最大也只有360MB,显示出显著的内存节省。
碰撞检测逻辑的调整
虽然动静分离方案在内存优化上带来了显著的好处,但它需要对原有的碰撞检测逻辑进行一定的调整。具体来说,以前的碰撞检测可能只需检查一次,而现在可能需要分别针对静态和动态碰撞数据进行两次检测。这种调整在实现上可能会增加一些算力开销,但由于每次碰撞检测的成本通常较低,这种增加是可接受的。
时间换空间的权衡
这种方案实际上是采用了一种“以时间换空间”的策略。通过牺牲一些计算时间,以换取更有效的内存管理。对于大多数游戏场景来说,这种权衡是合适的,尤其是在需要处理大量数据的情况下。
结论
经过上述的动静分离方案后,地图碰撞层面的内存开销得到了有效的控制。结合之前对物件碰撞数据的优化,《天刀》在面对海量碰撞的内存开销问题时,已经制定了一整套高效的解决方案。这不仅提升了游戏的内存使用效率,也为服务器的硬件配置降低了成本,进一步增强了游戏的可扩展性和玩家体验。通过这些优化,未来游戏的更新迭代和内容扩展也将更加轻松。
在《天刀》的开发过程中,海量碰撞带来的引擎失效问题是一个重要的挑战。在进行性能测试时,我们发现当pxscene
实例中添加过多的pxactor
时,可能会导致一些碰撞检测失效,从而影响角色的移动和技能表现。这一问题的阈值约为100万左右,显然在管理大量物件时,物理引擎的承载能力是有限的,而这与我们使用的PhysX版本(4.1)直接相关。
解决方案:区域矩阵划分
为了应对这一问题,我们提出了通过区域划分矩阵方格的方式对每个地图区域进行管理的方案。具体步骤如下:
-
划分矩阵方格:
- 将地图按照区域划分为矩阵方格,每个方格对应一个
pxscene
实例。 - 当物件被放置到地图上时,将其添加到覆盖该方格的所有
pxscene
实例中。
- 将地图按照区域划分为矩阵方格,每个方格对应一个
-
优势:
- 通过这样的划分,原本统一的碰撞检测空间被细分为多个小块,使得每个
pxscene
实例只需要承载本区域内的物件,显著降低了每个实例的物理负担,从而避免了碰撞无法检测的问题。
- 通过这样的划分,原本统一的碰撞检测空间被细分为多个小块,使得每个
-
碰撞检测逻辑的调整:
- 由于引入了多个
pxscene
实例,碰撞检测逻辑也需作相应调整。虽然这需要一些改动,但由于逻辑的复杂性较低,因此没有太大技术挑战。
- 由于引入了多个
另一个场景:地宫设计
在设计家园地宫时,我们的初期想法是使用大量的箱子来实现“挖掘”功能。每挖一次就移除一个边长1米的立方体,这意味着一个家园中会涉及超过100万的箱子,这对于pxscene
的管理无疑会造成很大的压力。
然后,我们意识到PhysX中有一种叫做heightfield
的pxshape
类型,它提供了打洞的特性。我们可以利用这个优势:
- 使用HeightField:
- 在家园地皮下方创建一个
heightfield
,并在需要的地方设置eHole
标记,以此实现打洞的效果。 - 通过这种方式创建的无限深洞只需少量的
pxactor
,每个家园中的pxactor
数量最多控制在1万之内,大大降低了管理复杂度。
- 在家园地皮下方创建一个
总结与方法论
通过对海量碰撞问题的逐步剖析与优化,我们得出以下结论:
- 很多问题往往是在规模扩大后产生的,即所谓的“量变引发质变”。如果没有极端的设计指标,常规方法也能实现相应功能。
- 在中大型项目中面临的挑战没有统一的解决方案,必须具体问题具体分析。
- 从视野、CPU、内存等维度进行优化时,可以考虑分治、时空互换、并行化以及动静分离等策略。
最终结果
经过这些优化,对于承载2万人的服务器,我们原本需要部署12台机器,但在引入了这些高自由度玩法后,只需额外增加4台机器即可满足需求。这相较于之前需要额外增加十几台机器的评估,成本降低了许多。这不仅提升了整个系统的运行效率,也为未来的扩展和用户体验提供了更好的保障。通过这些经验,我们也为后续的开发提供了宝贵的参考方向。
好了,今天的探讨就到这里。