简明摘要
多边形投影到轴上的算法,可用“手电筒照射钉子”比喻:选定方向(轴)后,将每个顶点投影为影子点,记录最左和最右的投影值形成区间。数学上通过点积计算投影距离,伪代码只需遍历顶点求最小/最大值。实际应用如游戏碰撞检测(2D/3D),关键在于检查两多边形的投影区间是否重叠——重叠则可能碰撞,分离则必不碰撞。核心口诀:“顶点投影定区间,重叠即碰,分离必分。”
1. 生活化比喻
想象你有一块手电筒(轴),和一堆钉子(多边形的顶点)。
- 你把手电筒对准一个方向(这就是“轴”)。
- 你把每个钉子都放在地上,然后用手电筒照射它们。
- 每个钉子都会在地上留下一个影子点(就是把点投影到轴上)。
- 你把所有影子点中最左边的和最右边的记下来,这就是这个多边形在这条轴上的“投影区间”。
对两个多边形都做一遍,就能得到它们在这条轴上的投影区间。
2. 数学直观
- 轴是一个单位向量,比如 (x, y)。
- 多边形的每个顶点是一个点,比如 (px, py)。
- 把点投影到轴上,就是算点和轴的点积(dot product):
投影值 = px * x + py * y
- 对所有顶点都算一遍,找出最小值和最大值,这就是投影区间。
3. 图解
轴(方向): →
多边形顶点: o
投影点: *
o
\
o
\
o
\
o
把每个o都“拉”到轴上,得到一串*,最左和最右的*就是投影区间。
4. 伪代码
def project_polygon(polygon_vertices, axis):
projections = []
for vertex in polygon_vertices:
# 点积就是投影
proj = vertex.x * axis.x + vertex.y * axis.y
projections.append(proj)
return min(projections), max(projections)
5. 形象总结
就像你用手电筒照射一堆钉子,每个钉子在地上有个影子。你只关心最左和最右的影子,这就是多边形在这条轴上的“投影区间”。
我们继续深入,把“多边形投影到轴上”这个过程讲得更形象、更细致,并补充一些常见问题和实际应用细节。
一、再举个生活例子
“晾衣绳上的夹子”
想象你有一根晾衣绳(这就是“轴”),你手里有一堆夹子(多边形的顶点)。
- 你把晾衣绳拉直,朝着某个方向。
- 你把每个夹子都挂到离你最近的地方(就是把顶点“投影”到轴上)。
- 有的夹子挂得靠左,有的靠右。
- 你数一数,最左边的夹子和最右边的夹子之间的距离,这就是“投影区间”。
对两个多边形都这样做,就能看到它们在晾衣绳上的“占地”是否有重叠。
二、动画想象
- 画一条直线(轴)。
- 把多边形的每个顶点“垂直”地投到这条直线上。
- 每个投影点在轴上形成一个小圆点。
- 你用尺子量一量,最左和最右的点,这就是区间。
三、为什么用点积?
点积的本质,就是“把一个点在某个方向上的分量”算出来。
比如,风吹在旗子上的力,就是风的方向和旗子的方向的点积。
- 点积大,说明投影远。
- 点积小,说明投影近。
四、实际代码(Python示例)
def project_polygon(vertices, axis):
# axis需要是单位向量
min_proj = float('inf')
max_proj = float('-inf')
for v in vertices:
# v是(x, y),axis也是(x, y)
proj = v[0] * axis[0] + v[1] * axis[1]
if proj < min_proj:
min_proj = proj
if proj > max_proj:
max_proj = proj
return min_proj, max_proj
五、常见问题
1. 轴为什么要单位化?
- 因为点积的结果和轴的长度有关。
- 单位化后,投影长度才是“真实距离”。
2. 为什么只关心最小和最大?
- 因为多边形的所有点投影后,区间[min, max]就是它在轴上的“全部占地”。
- 只要两个区间有重叠,说明有可能碰撞。
3. 如果区间不重叠呢?
- 说明在这个方向上,两个多边形完全分开。
- 这就是SAT的“分离轴”!
六、实际应用场景
- 2D游戏:比如子弹和障碍物、角色和墙壁的碰撞检测。
- 3D游戏:原理一样,只是点和轴变成三维。
- 物理引擎:如Box2D、Chipmunk等,底层都用这个原理。
七、形象口诀
“顶点投影到轴上,最左最右定区间;区间重叠有可能碰,区间分开必不碰。”