PCL SAC-IA 初始配准算法【2024最新版】

260 篇文章 7934 订阅 ¥19.90 ¥99.00
本文介绍了PCL库中的SAC-IA算法,用于3D点云配准。首先阐述了算法的原理,包括随机采样、点云特征匹配和变换质量度量。接着,讨论了代码实现细节,并展示了算法的应用结果。参考文献包含了关键论文和相关研究。
摘要由CSDN通过智能技术生成

在这里插入图片描述
本文由CSDN点云侠原创,原文链接,首发于:2021年2月27日。抄袭狗把自己当个狗!!!。

博客长期更新,本文最新更新时间为:2024年10月18日。代码在PCL1.14.1中测试通过

一、算法原理

1、算法流程

输入:源点云 P s

PCL (Point Cloud Library) 中的 SAC-IA (Sample Consensus Initial Alignment) 和 ICP (Iterative Closest Point) 都是点云配准中常用的算法,结合使用可以实现更准确的配准结果。 SAC-IA 是一种采样一致性算法,可以快速地计算出两个点云之间的初步变换矩阵。ICP 算法则是一种迭代优化算法,可以在初步变换矩阵的基础上进一步优化获取更精确的变换矩阵。 下面是使用 PCL 进行 SAC-IA+ICP 配准的示例代码: ```cpp pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_source (new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_target (new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_source_aligned (new pcl::PointCloud<pcl::PointXYZ>); // 加载源点云和目标点云 pcl::io::loadPCDFile<pcl::PointXYZ> ("source_cloud.pcd", *cloud_source); pcl::io::loadPCDFile<pcl::PointXYZ> ("target_cloud.pcd", *cloud_target); // 创建 SAC-IA 对象 pcl::SampleConsensusInitialAlignment<pcl::PointXYZ, pcl::PointXYZ, pcl::FPFHSignature33> sac_ia; sac_ia.setInputCloud (cloud_source); sac_ia.setSourceFeatures (source_features); sac_ia.setInputTarget (cloud_target); sac_ia.setTargetFeatures (target_features); sac_ia.setMinSampleDistance (0.05f); sac_ia.setMaxCorrespondenceDistance (0.1); sac_ia.setMaximumIterations (500); // 计算初步变换矩阵 pcl::PointCloud<pcl::PointXYZ>::Ptr sac_aligned (new pcl::PointCloud<pcl::PointXYZ>); sac_ia.align (*sac_aligned); // 创建 ICP 对象 pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp; icp.setInputSource (sac_aligned); icp.setInputTarget (cloud_target); icp.setMaxCorrespondenceDistance (0.05); icp.setMaximumIterations (100); // 优化变换矩阵 icp.align (*cloud_source_aligned); // 输出配准结果 std::cout << "SAC-IA+ICP has converged:" << icp.hasConverged () << " score: " << icp.getFitnessScore () << std::endl; // 保存配准后的点云 pcl::io::savePCDFile ("aligned_cloud.pcd", *cloud_source_aligned); ``` 在上述代码中,我们首先加载了源点云和目标点云。然后创建了 SAC-IA 对象,设置了输入点云、特征、最小采样距离、最大对应距离和最大迭代次数,然后调用 `align()` 函数计算初步变换矩阵。接着创建了 ICP 对象,设置了输入源点云和目标点云,最大对应距离和最大迭代次数,然后调用 `align()` 函数优化变换矩阵。最后输出配准结果并保存配准后的点云。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值