PCA 实现点云粗配准(python版本)

260 篇文章 5831 订阅 ¥19.90 ¥99.00
本文介绍了使用PCA进行点云数据的初始配准和RT初始校正。通过PCA计算特征向量确定旋转矩阵和平移向量,然后校正可能的反向误差,为精确配准提供初始值。并提供了Python代码实现和测试数据。
摘要由CSDN通过智能技术生成

一、算法原理

1、基于PCA的初始配准

  主成分分析(PCA)是一种常用的数据分析方法,通过线性变换提取数据的主要特征分量,常用于高纬数据的降纬。
  基于主成分分析的初始配准方法,主要利用点云数据的主轴方向进行配准。首先计算两组点云的协方差矩阵,根据协方差矩阵计算主要的特征分量,即点云数据的主轴方向;然后再通过主轴方向求出旋转矩阵,计算两组点云中心坐标的便移直接求出平移向量。PCA主成分分析方法进行初始配准的流程如下:
  假设两组点云 P P P

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值