Open3D(C++) 改进的K均值聚类算法

195 篇文章 922 订阅 ¥19.90 ¥99.00
本文介绍了针对经典KMeans算法的改进策略,旨在提高聚类的成功率。通过调整选点策略,解决了传统KMeans算法在处理某些场景时可能出现的分类不准确问题。详细阐述了算法的改进思想,并提供了C++代码实现,包括KMeans头文件和源文件。同时,展示了改进算法在3D点云数据上的应用效果,对比了原始点云和聚类结果,证实了改进算法的有效性。
摘要由CSDN通过智能技术生成

一、算法概述

  经典Kmeans算法原理介绍见:PCL Kmeans点云聚类
由于传统Kmeans算法是随机选取聚类中心点,可能会出现聚类失败的现象。因此对选点策略进行改进,从而使算法成功的概率大大提高。如下图所示,传统算法会将路灯一分为二,改进后的则分类更加准确。
在这里插入图片描述

二、代码实现

KMeans.h

#pragma once

#include <iostream>
Open3D是一种现代的开源库,它广泛用于全球学术研究和工业界。Open3D提供了许多功能,其中包括k均值聚类算法。K均值聚类是一种常见的聚类方法,其目标是将n个数据点分为k个簇,使得每个点都属于与其最近的中心点所代表的簇。K均值聚类的实现流程如下: 1. 随机初始化k个中心点; 2. 将每个数据点分配到离其最近的中心点所代表的簇; 3. 计算每个簇的中心点; 4. 重复步骤2和3,直到收敛。 在Open3D中,我们可以使用聚类函数进行k均值聚类。该函数输入要聚类点云聚类数k,并返回聚类结果。例如,下面是如何使用Open3D进行k均值聚类的示例代码: import open3d as o3d # Load point cloud data pcd = o3d.io.read_point_cloud("point_cloud.ply") # Set the number of clusters k = 6 # Perform k-means clustering labels = pcd.cluster_kmeans(k) # Visualize the clusters colors = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0.5, 0.5, 0], [0, 0.5, 0.5], [0.5, 0, 0.5]] for i in range(k): indices = np.where(labels == i)[0] cluster = pcd.select_down_sample(indices) cluster.paint_uniform_color(colors[i]) o3d.visualization.draw_geometries([cluster]) 在上述代码中,我们首先加载了一个点云数据。然后,我们设置了要聚类的数量k,并使用cluster_kmeans函数执行了k均值聚类。最后,我们对聚类结果进行了可视化处理。 总的来说,Open3D是一个强大且易于使用的库,它使得k均值聚类变得简单易行。对于那些对点云聚类感兴趣的人,Open3D是一个非常不错的选择。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值