特征值与特征向量
对
n
n
n阶矩阵
A
A
A,如果数
λ
\lambda
λ和
n
n
n维非零列向量
x
x
x使关系式
A
x
=
λ
x
Ax=\lambda x
Ax=λx
成立,那么,这样的数
λ
\lambda
λ称为矩阵
A
A
A特征值,非零向量
x
x
x称为
A
A
A的对应于特征值
λ
\lambda
λ的特征向量。(同济大学线性代数第六版P120)
于是有
(
A
−
λ
E
)
x
=
0
(A-{\lambda}E)x=0
(A−λE)x=0
令
A
1
=
(
A
−
λ
E
)
A_1=(A-\lambda E)
A1=(A−λE),则
A
1
x
=
0
A_{1}x=0
A1x=0,于是问题转换为线性齐次方程组的解的问题。
齐次线性方程组的解
对于齐次线性方程组
a
11
x
1
+
a
12
x
2
+
.
.
.
+
a
1
n
x
n
=
0
,
a
21
x
1
+
a
22
x
2
+
.
.
.
+
a
2
n
x
n
=
0
,
⋯
a
n
1
x
1
+
a
n
2
x
2
+
.
.
.
+
a
n
n
x
n
=
0.
a_{11}x_{1}+a_{12}x_2+...+a_{1n}x_{n}=0,\\ a_{21}x_{1}+a_{22}x_2+...+a_{2n}x_{n}=0,\\{\cdots}\\a_{n1}x_{1}+a_{n2}x_2+...+a_{nn}x_{n}=0.
a11x1+a12x2+...+a1nxn=0,a21x1+a22x2+...+a2nxn=0,⋯an1x1+an2x2+...+annxn=0.
当
A
1
A_1
A1满秩时,即矩阵的秩
r
r
r等于未知数的个数
n
n
n时,方程组有唯一零解,即
x
⃗
=
[
x
1
x
2
⋯
x
n
]
=
[
0
0
⋯
0
]
\vec{x}=\begin{bmatrix} x_{1}\\x_{2}\\{\cdots} \\x_{n} \end{bmatrix}=\begin{bmatrix} 0\\0\\{\cdots} \\0 \end{bmatrix}
x=⎣⎢⎢⎡x1x2⋯xn⎦⎥⎥⎤=⎣⎢⎢⎡00⋯0⎦⎥⎥⎤
而特征向量
x
⃗
\vec{x}
x是非零列向量,即对应非零解,而
n
n
n元齐次线性方程组
A
x
=
0
Ax=0
Ax=0有非零解的充分必要条件是
R
(
A
)
<
n
R(A)<n
R(A)<n(同济大学线性代数第六版P76),即
A
1
A_1
A1的秩
r
r
r小于未知数的个数
n
n
n,又因为对于非满秩的方阵其行列式为0,所以当解为非零解时,行列式
∣
A
−
λ
E
∣
=
0
\begin{vmatrix} A-{\lambda}E \end{vmatrix}=0
∣∣A−λE∣∣=0
因此特征值 是 系数行列式(特征方程)等于0时的 解,原理概括就是齐次线性方程组有非零解的充分必要条件是系数行列式等于0,这就是求特征值时需要去解特征方程等于0的原因。
参考
齐次线性方程组有非零解的条件
矩阵特征值和特征向量详细计算过程
求特征值和特征向量时为什么特征行列式要等于零?
超定方程的求解、最小二乘解、Ax=0、Ax=b的解,求解齐次方程组,求解非齐次方程组(推导十分详细):https://blog.csdn.net/u011341856/article/details/107758182
同济大学线性代数第六版–高等教育出版社
完
如有错漏,敬请指正
--------------------------------------------------------------------------------------------诺有缸的高飞鸟202104